使用R语言中的p.adjust函数对概率值进行调整

220 篇文章 ¥59.90 ¥99.00
本文介绍了R语言中p.adjust函数的作用,该函数用于在多次假设检验时调整概率值,以控制整体错误率。文章详细阐述了Holm、Bonferroni和Benjamini-Hochberg三种调整方法,并提供了代码示例展示如何使用这些方法调整概率值,以增强统计推断的可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用R语言中的p.adjust函数对概率值进行调整

在统计学和数据分析中,经常需要对多个假设进行检验。在执行多次假设检验时,为了控制整体错误率,需要对概率值进行调整。R语言中的p.adjust函数提供了一种方便的方法来调整概率值,以控制多重比较的错误率。

p.adjust函数的语法如下:

p.adjust(p, method = "holm")

其中,p是一个包含原始概率值的向量,method是调整方法的名称,"holm"是默认的调整方法。下面将介绍几种常用的调整方法。

  1. Holm方法:Holm方法是一种经典的调整方法,它按照原始概率值的大小对其进行排序,并按照特定的顺序进行调整。代码示例如下:
p_adjusted <- p.adjust(p, method = "holm")
  1. Bonferroni方法:Bonferroni方法是一种简单且保守的调整方法,它将整体错误率均匀分配给每个假设。代码示例如下:
p_adjusted <- p.adjust(p, metho
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值