使用timeROC包绘制多时间生存资料的AUC曲线

220 篇文章 ¥59.90 ¥99.00
本文介绍了如何在R语言中使用timeROC包绘制时间相关接受者操作特征曲线(timeROC曲线),以评估生存模型在不同时间点的预测性能。通过安装timeROC包,拆分数据,使用plotAUCcurve和plotAUC函数,可以绘制并自定义AUC曲线,帮助分析生存模型的预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用timeROC包绘制多时间生存资料的AUC曲线

时间相关接受者操作特征曲线(time-dependent receiver operating characteristic curve,简称timeROC曲线)是一种评估生存模型预测准确性的有力工具。在R语言中,我们可以使用timeROC包来绘制多时间生存资料的AUC曲线,以评估生存模型在不同时间点的预测性能。本文将介绍如何使用timeROC包中的plotAUCcurve函数绘制这些曲线。

首先,确保已经安装了timeROC包。可以使用以下命令安装timeROC包:

install.packages("timeROC")

安装完成后,使用以下命令加载timeROC包:

library(timeROC)

接下来,我们需要准备用于绘制AUC曲线的数据。假设我们有一个多时间生存数据集,其中包含以下变量:

  • 时间(Time):表示事件发生或最后随访的时间。
  • 事件状态(Status):表示事件的发生情况,1表示事件发生,0表示事件未发生。
  • 预测分数(Score):表示生存模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值