使用timeROC包绘制多时间生存资料的AUC曲线
时间相关接受者操作特征曲线(time-dependent receiver operating characteristic curve,简称timeROC曲线)是一种评估生存模型预测准确性的有力工具。在R语言中,我们可以使用timeROC包来绘制多时间生存资料的AUC曲线,以评估生存模型在不同时间点的预测性能。本文将介绍如何使用timeROC包中的plotAUCcurve函数绘制这些曲线。
首先,确保已经安装了timeROC包。可以使用以下命令安装timeROC包:
install.packages("timeROC")
安装完成后,使用以下命令加载timeROC包:
library(timeROC)
接下来,我们需要准备用于绘制AUC曲线的数据。假设我们有一个多时间生存数据集,其中包含以下变量:
- 时间(Time):表示事件发生或最后随访的时间。
- 事件状态(Status):表示事件的发生情况,1表示事件发生,0表示事件未发生。
- 预测分数(Score):表示生存模型