最短路径Dijkstra算法

#include<iostream>
using namespace std;

int a[100][100];    //邻接矩阵
int book[10]= {0};  //book数组用来标记哪些点目前是最短的距离
int dist[10];       //dist数组用来存储第一个顶点到其余顶点的最短距离
const int inf=99999999; //假设这个数表示无穷大
int n;              //顶点数
int e;              //边数
int t1,t2,t3;       //t1,t2,t3,表示t1到t2的距离为t3
int i,j,k,Min,u;    //Min用来取最小值,u保存最小值的下标

//
void Create()
{
    cin>>n>>e;
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
        {
            if(i==j)
                a[i][j]=0;
            else
                a[i][j]=inf;
        }
    for(i=1; i<=e; i++)
    {
        cin>>t1>>t2>>t3;
        a[t1][t2]=t3;
    }
    for(i=1; i<=n; i++)
        dist[i]=a[1][i];
}

void Dijkstra()
{
    book[1]=1;
    for(i=1; i<=n-1; i++)
    {
        for(j=1; j<=n; j++)
        {
            Min=inf;
            if(book[j]==0 && dist[j]<Min)
            {
                Min=dist[j];
                u=j;
            }
        }
        book[u]=1;
        for(k=1; k<=n; k++)
        {
            if(a[u][k]<inf)
            {
                if(dist[k]>dist[u]+a[u][k])
                    dist[k]=dist[u]+a[u][k];
            }
        }
    }
    for(i=1; i<=n; i++)
        cout<<"1号顶点到"<<i<<"号顶点的最短距离为-------->"<<dist[i]<<endl;
}

int main()
{
    Create();
    Dijkstra();
    return 0;
}
测试数据:
6 10
1 2 2
1 5 3
1 3 12
2 3 3
2 4 6
4 3 4
4 6 15
5 4 2
5 6 4
3 5 5


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值