A.Subsegment Reverse
题意
给出三个正整数N,L,RN, L, RN,L,R。
对于一个序列A=(1,2,…,N)A = (1, 2, \ldots, N)A=(1,2,…,N),请你输出翻转了L∼RL \sim RL∼R之间数字后得到的序列。
分析
使用循环进行翻转即可。
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 5e2;
int a[N];
void solve() {
int n, l, r;
cin >> n >> l >> r;
for (int i = 1; i <= n; i++) {
a[i] = i;
}
for (int i = l, j = r; i <= j; i++, j--) {
swap(a[i], a[j]);
}
for (int i = 1; i <= n; i++) {
cout << a[i] << ' ';
}
}
int main () {
solve();
return 0;
}
B.Nutrients
题意
高桥每天需要补充MMM种营养物质,第jjj种营养物质至少需要补充AjA_jAj单位。
今天,他将会吃掉NNN种食物,其中第iii种食物能依次获得Xi,1,Xi,2,…,Xi,MX_{i, 1}, X_{i, 2}, \ldots, X_{i, M}Xi,1,Xi,2,…,Xi,M营养,其中Xi,jX_{i, j}Xi,j表示第iii种食物提供的jjj营养物质的数量。
问:今天能否获得足够的营养?
分析
直接在输入的AAA数组中减去每个食物对应的营养即可。
如果输入完成后,AAA数组里只存在负数和000,那么就表示获得了足够的营养,否则。说明没有获得足够的营养。
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 5e2;
int a[N];
void solve() {
int n, m;
cin >> n >> m;
for (int i = 1; i <= m; i++) {
cin >> a[i];
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int x;
cin >> x;
a[j] -= x;
}
}
for (int i = 1; i <= m; i++) {
if (a[i] > 0) {
cout << "No" << endl;
return;
}
}
cout << "Yes" << endl;
}
int main () {
solve();
return 0;
}
C.Keys(二进制枚举)
题意
有NNN把钥匙,其中有真有假。
有一扇门,每次可以选择若干把钥匙一起开门,如果其中至少包含kkk把真的钥匙,那么就可以把门打开。
你对这个门尝试了MMM次以下操作:
-
选择CiC_iCi把钥匙Ai,1,Ai,2,…,Ai,CiA_{i, 1}, A_{i, 2}, \ldots, A_{i, C_i}Ai,1,Ai,2,…,Ai,Ci,并尝试打开门。
-
获得当前尝试的结果RiR_iRi:
-
如果Ri=′o′R_i = 'o'Ri=′o′:表示门被打开了
-
如果Ri=′x′R_i = 'x'Ri=′x′:表示门未被打开
-
已知钥匙的真假情况共有2N2^{N}2N种,请问其中有多少种情况满足MMM次操作的结果。
分析
由于n≤15n \le 15n≤15,那么2n≤215=327682^{n} \le 2^{15} = 327682n≤215=32768,因此,总的方案数是很小的,可以使用一个长度为nnn的二进制串表示钥匙的真假情况,即二进制串第iii位为000表示第iii把钥匙为假,第iii位为111表示第iii把钥匙为真。
然后枚举所有可能的二进制串(0∼2n−1)(0 \sim 2^{n} - 1)(0∼2n−1),并检查每个二进制串是否满足题目要求,即能打开门的方案中真钥匙的数量是否大于等于kkk,不能打开门的方案中真钥匙的数量是否小于kkk。如果满足题目要求,就记录答案数量加一。
最后输出记录的答案数量即可。
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 3e2 + 5e2;
int n, m, k, c[N], r[N], a[N][N];
bool check(int x) {
for (int i = 1; i <= m; i++) {
int cnt = 0;
for (int j = 1; j <= c[i]; j++) {
if ((x & (1 << (a[i][j] - 1))) != 0) {
cnt++;
}
}
if (cnt >= k && r[i] == 1 || cnt < k && r[i] == 0) {} else {
return 0;
}
}
return 1;
}
void solve() {
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
cin >> c[i];
for (int j = 1; j <= c[i]; j++) {
cin >> a[i][j];
}
char op;
cin >> op;
if (op == 'o') r[i] = 1;
else r[i] = 0;
}
int ans = 0;
for (int i = (1 << n) - 1; i >= 0; i--) {
if (check(i)) {
ans++;
}
}
cout << ans << endl;
}
int main () {
solve();
return 0;
}
D.Masked Popcount(数学)
题意
给出两个数字N,MN, MN,M,请你计算KaTeX parse error: Expected 'EOF', got '&' at position 40: …opcount(k\text{&̲}M)取模998244353998244353998244353的结果。
分析
先不考虑MMM,先考虑∑k=0Npopcount(k)\sum\limits_{k = 0}^{N}popcount(k)k=0∑Npopcount(k)的结果。
使用ans[i]ans[i]ans[i]表示1∼N1 \sim N1∼N之间二进制第iii为为一的数字个数。
那么∑k=0Npopcount(k)=∑i=059ans[i]\sum\limits_{k = 0}^{N}popcount(k) = \sum\limits_{i = 0}^{59}ans[i]k=0∑Npopcount(k)=i=0∑59ans[i]。
然后打表来找一下规律:
- n=1n = 1n=1时, ans=[1]ans = [1]ans=[1]
- n=2n = 2n=2时, ans=[1,1]ans = [1, 1]ans=[1,1]
- n=4n = 4n=4时, ans=[2,2,1]ans = [2, 2, 1]ans=[2,2,1]
- n=8n = 8n=8时, ans=[4,4,4,1]ans = [4, 4, 4, 1]ans=[4,4,4,1]
- n=16n = 16n=16时,ans=[8,8,8,8,1]ans = [8, 8, 8, 8, 1]ans=[8,8,8,8,1]
- …
- n=2in = 2^{i}n=2i时,ans=[2i−1,2i−1,…,2i−1,1]ans = [2^{i - 1}, 2^{i - 1}, \ldots, 2^{i - 1}, 1]ans=[2i−1,2i−1,…,2i−1,1]
这样就可以找到nnn为222的次方数,对每位二进制产生的贡献。
那如果n=2i+a(a<2i)n = 2^{i} + a(a < 2^{i})n=2i+a(a<2i)呢?
不难想到,2i∼2i+a2^{i} \sim 2^{i} + a2i∼2i+a最高的二进制位固定为111,那么共有1+a1 + a1+a个这样的数字,对第iii个二进制位产生的贡献即为1+a1 + a1+a,然后让nnn减去2i2^{i}2i,继续计算剩余的nnn还能产生的贡献即可。
因此,可以依次枚举59∼059 \sim 059∼0,如果n≥2in \ge 2^{i}n≥2i,那么就让所有的ans[j](j=0∼(i−1))ans[j](j = 0 \sim (i - 1))ans[j](j=0∼(i−1))均加上2i−12^{i - 1}2i−1,并让ans[i]ans[i]ans[i]加上1+n1 + n1+n % 2i2^{i}2i,然后让nnn减去2i2^{i}2i。
这样,就可以得到了∑k=0Npopcount(k)=∑i=059ans[i]\sum\limits_{k = 0}^{N}popcount(k) = \sum\limits_{i = 0}^{59}ans[i]k=0∑Npopcount(k)=i=0∑59ans[i],然后计算popcountpopcountpopcount时需要让KaTeX parse error: Expected 'EOF', got '&' at position 9: k \text{&̲} m,那么不难想到,答案即为所有mmm的二进制位上为111对应的ans[i]ans[i]ans[i]之和。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 998244353;
ll ans[105];
void solve() {
ll n, m;
cin >> n >> m;
for (int i = 60; i >= 0; i--) {
if (n >= (1ll << i)) {
ans[i] = ((ans[i] + 1) % mod + n % (1ll << i)) % mod;
for (int j = i - 1; j >= 0; j--) {
ans[j] = (ans[j] + (1ll << (i - 1)) % mod) % mod;
}
n -=(1ll << i);
}
}
ll res = 0;
for (int i = 60; i >= 0; i--) {
if (m & (1ll << i))
res = (res + ans[i]) % mod;
}
cout << res << endl;
}
int main () {
solve();
return 0;
}
E.Max/Min(前缀和)
题意
给出一个序列A=(A1,…,An)A = (A_1, \ldots, A_n)A=(A1,…,An),请你求出:
- ∑i=1n−1∑j=i+1n⌊max(Ai,Aj)min(Ai,Aj)⌋\sum\limits_{i = 1}^{n - 1}\sum\limits_{j = i + 1}^{n}\lfloor \frac{max(A_i, A_j)}{min(A_i, A_j)} \rfloori=1∑n−1j=i+1∑n⌊min(Ai,Aj)max(Ai,Aj)⌋
分析
不难想到,如果Ai<AjA_i < A_jAi<Aj,那么⌊max(Ai,Aj)min(Ai,Aj)⌋=⌊AjAi⌋\lfloor \frac{max(A_i, A_j)}{min(A_i, A_j)} \rfloor = \lfloor \frac{A_j}{A_i} \rfloor⌊min(Ai,Aj)max(Ai,Aj)⌋=⌊AiAj⌋。
因此,可以考虑对所有的AiA_iAi,统计∑j=i+1n⌊AjAi⌋\sum\limits_{j = i + 1}^{n}\lfloor \frac{A_j}{A_i} \rfloorj=i+1∑n⌊AiAj⌋。
然后考虑怎么快速计算出∑j=i+1n⌊AjAi⌋\sum\limits_{j = i + 1}^{n}\lfloor \frac{A_j}{A_i} \rfloorj=i+1∑n⌊AiAj⌋,由于选择的是向下取整,那么对于数字xxx而言,y=x×j∼(x×(j+1))−1y = x \times j \sim (x \times (j + 1)) - 1y=x×j∼(x×(j+1))−1得到的⌊yx⌋\lfloor \frac{y}{x} \rfloor⌊xy⌋均是相同的,因此,可以预处理前缀和,以便于快速知道x×j∼(x×(j+1))−1x \times j \sim (x \times (j + 1)) - 1x×j∼(x×(j+1))−1之间的数字个数,此时产生的贡献即为j×(pre[(x×(j+1))−1]−pre[x×j−1])×cntj \times (pre[(x \times (j + 1)) - 1] - pre[x \times j - 1]) \times cntj×(pre[(x×(j+1))−1]−pre[x×j−1])×cnt,其中cntcntcnt为数字xxx的出现次数。
因此,可以使用sumsumsum数组记录每个数字的出现次数,然后对记录的数字出现次数预处理前缀和。
然后,就可以枚举数字iii了,对于数字iii,再枚举jjj从111到i×j≤106i \times j \le 10^{6}i×j≤106的范围内。统计所有数字产生的贡献即可。
此时计算过程中会多计算了一部分,需要在计算后减去。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 5e2;
ll sum[N], pre[N];
int main() {
int n;
cin >> n;
for (int i = 1, num; i <= n; i++) {
cin >> num;
sum[num]++;
}
for (int i = 1; i <= 1e6; i++) {
pre[i] = pre[i - 1] + sum[i];
}
ll ans = 0;
for (int i = 1; i <= 1e6; i++) {
for (int j = 1; j * i <= 1e6; j++) {
ans += j * (pre[min((j + 1) * i - 1, 1000000)] - pre[j * i - 1]) * sum[i];
}
ans -= sum[i] * (1 + sum[i]) / 2;
}
cout << ans << endl;
return 0;
}
F.Distance Component Size Query(平衡树)
题意:
给你一个整数KKK。对于初始为空的集合SSS,依次处理以下两种类型的QQQ查询:
1 x:给出一个整数xxx。如果xxx在SSS中,则从SSS中删除xxx。否则,在SSS中加入xxx。2 x:给出位于SSS中的整数xxx。考虑一个图,其中的顶点是SSS中的数字,并且当且仅当两个数字之间的绝对值差最多为KKK时,这两个数字之间有一条边。请打印包含xxx的连通部分中的顶点数。
分析:
本题操作222可以看作查询xxx所在的连通块大小,此处我们定义连通块为位于集合SSS中的数,他们中两个数的绝对值之差小于等于KKK时,就可以存在一条边。对于求一个连通块内点的个数,我们考虑缩点。
考虑使用SetSetSet来维护集合:S1S1S1维护所有点集合,S2S2S2维护缩点的集合,即只存放编号最大的点。在S2S2S2中需要求两个元素之间的距离,对于本题,暴力会超时,需要使用平衡树求排名,即rankrankrank。普通SetSetSet不方便进行求rankrankrank的操作,所以我们使用pb_ds对S1S1S1进行维护,S2S2S2使用普通SetSetSet也可以。
代码:
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_pbds;
typedef long long LL;
const LL mod = 1000000007;
const LL MAXN = 4e18;
#define TR tree<LL, null_type, less<LL>, rb_tree_tag, tree_order_statistics_node_update>
TR s1, s2;
int main() {
int q;
LL k;
cin >> q >> k;
s1.insert(-MAXN), s1.insert(MAXN);
s2.insert(-MAXN), s2.insert(MAXN);
while (q--) {
int cnt;
LL x;
cin >> cnt >> x;
if (cnt == 1) {
if (s1.find(x) == s1.end()) {
auto it = s1.insert(x).first;
LL w1 = *prev(it), w2 = *next(it);
if (x - w1 <= k)
s2.erase(w1);
if (w2 - x <= k)
continue;
else
s2.insert(x);
} else {
auto it = s1.find(x);
LL w1 = *prev(it), w2 = *next(it);
s1.erase(x), s2.erase(x);
if (w2 - w1 > k)
s2.insert(w1);
}
} else {
auto it = s2.lower_bound(x); // 找x所在连通块编号最大点
cout << s1.order_of_key(*it) - s1.order_of_key(*prev(it)) << endl;
}
}
return 0;
}
赛后交流
在比赛结束后,会在交流群中给出比赛题解,同学们可以在赛后查看题解进行补题。
群号: 704572101,赛后大家可以一起交流做题思路,分享做题技巧,欢迎大家的加入。

1503

被折叠的 条评论
为什么被折叠?



