【Python】一文带你认识 Web 框架之 FastAPI

 

作者主页:爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?type=blog个人简介:打工人。

持续分享:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。

如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com 

 

 

目录

一、简介

二、发展史

三、主要功能

FastAPI 有以下主要优势:

FastAPI 为我们提供了以下主要功能:

四、参数详解

五、使用步骤

        第1步:安装 FastAPI

        第2步:安装 uvicorn

        第3步:定义API接口

        第4步:运行 server 

六、示例代码

七、总结


一、简介

        FastAPI是一个现代、快速(高性能)的Web框架,用于构建API,基于Python 3.6+,并使用了标准的Python类型注解(Python 3.5也支持类型注解),以获得交互式API文档(通过OpenAPI/Swagger)和自动验证。 FastAPI是一个Web框架,它与Flask和Django等框架不同。它具有更高的性能和易用性,并提供了最新的标准和技术,例如类型注释、异步编程、请求和响应体(JSON和其他数据格式)的内置验证和文档生成等。

        FastAPI的目标是帮助构建更好的API,尽可能简单而快速,并使API更容易创建和部署。它的设计重点在于提高开发人员的生产力并保持代码清晰和易于理解。这使得FastAPI成为构建精细和高性能API的理想选择。FastAPI的强大功能使得它成为许多Python开发人员的首选框架。

二、发展史

        FastAPI于2019年发布。它是由Sebastian Ramirez创建的,他曾经为12个国家的公司工作,包括伊利诺伊州大学(University of Illinois),Cloudinary,gumgum Inc等等。他还是Pydantic框架的创建者,并成为了多个开源项目的贡献者,例如拖动PDF的pdfkit和 PDFTables等。他是Python开发人员社区活跃分子和会议演讲人,并在Python开发人员社区拥有广泛的联系。

        FastAPI于2019年首次推出,其设计初衷是为了解决Python Web框架在数据类型验证和文档生成方面的问题。与Flask等传统Web框架不同,FastAPI使用了Python类型注解和Pydantic模型,并使用async/await异步语法以提高性能。 FastAPI还支持使用OpenAPI和Swagger进行文档生成,使API整个生命周期更易于管理。

        FastAPI的稳定版本1.0于2020年6月发布。

三、主要功能

FastAPI 有以下主要优势:

  • 快速:极其快速的性能,得益于使用Pydantic、Starlette等技术。
  • 标准:基于标准 Python 类型标注的 Python 3.6+ 代码。
  • 少量代码:通过利用 Python 特性,使代码量最小化。
  • 快速编写:尽可能简单和易于编写的 API 以及自动生成文件的功能。

FastAPI 为我们提供了以下主要功能:

  • 非常快的性能
  • 基于标题和 OAuth2,OpenID Connect 等的身份验证
  • 集成式支持多个 SQL 和 NoSQL 数据库
  • 多模板支持(Pydantic、Multipart Form、Form、JSON、WebSocket、Webhook、GraphQL)
  • 参考文献,并可以自动生成 API 文档
  • 具有 Docker 和 Kubernetes 的现成支持
  • 适用于 JWT,Cookies 等的访问和安全性实用程序
  • Starlette 和 Pydantic 等代码生态系统的集成

四、参数详解

        在 FastAPI 中,我们定义 API 操作的方式与标准 Python 函数相同。在快速定义标识HTTP Request方法和路由的接口时, FastAPI 提供了诸多参数来帮助我们完成不同的处理操作。

        下面是 FastAPI 中常见的参数类型:

  • Query:用于查询参数,它们是GET请求和POST/PUT参数串,直接在URL中的明文传输。
  • Path:用于路径参数。从路径参数和转换后的查询参数中提取数据。
  • Body:用于在请求体中传输的数据,它可以是任何类型,并使用json解析功能进行验证和转换。
  • Form:用于在表单中提交的数据,例如以POST方法提交的HTML表单。
  • File:用于上传文件数据。
  • Header:用于HTTP标头某些参数。(包含Content-Type)等参与逻辑运算授权。
  • Cookie:用于请求中的Cookie。
  • Depends:对于复杂操作,您需要多个方法,它们可能具有依赖项和许多其他细节。依赖项是将函数传递给参数来创建的。

五、使用步骤

        想要使用 FastAPI 开发自己的 Web API,步骤如下:

        确保你已经安装Python3.6及以上版本。

        第1步:安装 FastAPI

        使用下面的命令安装 FastAPI:

pip install fastapi

        第2步:安装 uvicorn

        安装 uvicorn 启动服务器:

pip install uvicorn

        第3步:定义API接口

        以下是 FastAPI 简单的示例代码,定义了一个接口,通过访问“/”路由,返回一个JSON串{"Hello":"World"}:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def index():
    return {"Hello":"World"}

        第4步:运行 server 

         使用以下命令启动服务:

uvicorn main:app --reload

# 此处请把main改为你代码启动主文件名

        到这里,咱们就可以通过访问http://127.0.0.1:8000/ping来测试API接口是否可用。 

六、示例代码

        首先,我们需要创建一个名为“main.py”的文件并导入 FastAPI。

from fastapi import FastAPI

# 初始化 FastAPI
app = FastAPI()

        接下来,我们将定义一个可获取的路由,可以使用浏览器或者cURL访问该路由。 

@app.get("/users")
async def get_users():
    return {"users": []}

        现在,如果通过浏览器访问上面的URL,应该会得到一个JSON格式的响应。

        最后,我们需要启动服务器并监听请求。为此,可以使用Uvicorn命令行工具。

uvicorn main:app --reload 

        现在API运行并监听端口8000。打开浏览器访问“http://localhost:8000/users”返回“{“users”: []}”。 

七、总结

        FastAPI是一款适合构建高性能、易用、易扩展的web框架,它广泛应用于Python web服务开发和微服务架构中。FastAPI具有强大的文档整合与代码完整性,追求代码简洁与易读性,具有较好的网站性能和响应速度。它还提供多种参数类型,可以有效地验证输入和请求。FastAPI还内置了Swagger UI界面,可以自动生成API文档,让API管理变得简单易用。但是FastAPI增加的代码量会在初学者中引起烦恼,因为新增的注释使得操作变得稍微有些复杂。但是对于有一定开发经验的开发者来说,这一点难度也很容易被克服,FastAPI已经成为开发Python Web应用程序和微服务的首选框架之一。

 

### 如何在 Keras 中使用 GPU 加速 为了利用 GPU 提升深度学习模型训练的速度,在 Keras 深度学习框架中可以采用多种方式配置和运行环境。以下是关于如何设置并启用 GPU 的详细说明。 #### 配置远程服务器以支持 GPU 计算 一种简单且经济高效的方法是租用按小时计费的远程机器来访问高性能 GPU 资源[^1]。Amazon Web Services (AWS) 是一个广泛使用的平台,提供了详细的指南用于部署有 GPU 支持的 Keras 环境。例如,《Keras with GPU on Amazon EC2》一文中介绍了逐步操作流程;而《Running Jupyter notebooks on GPU on AWS: a starter guide》则进一步解释了如何在云端环境中运行 Jupyter Notebook 并充分利用 GPU 性能。 如果不想依赖本地设备资源,则可以在云平台上执行代码从而节省笔记本电脑的压力[^2]。这种方法特别适合那些希望快速测试或扩展其项目的开发者们。 #### 安装必要的软件包和支持库 要让 Keras 使用 NVIDIA CUDA 技术驱动下的 GPU 进行计算,请先安装 TensorFlow 或其他兼容后端版本作为主要引擎之一,并确保已正确设置了相应的硬件驱动程序以及 cuDNN 库文件路径等参数。对于某些特定需求来说还可以考虑额外引入像 Elephas 这样的第三方插件来进行分布式训练等功能增强[^4]: ```bash pip install tensorflow-gpu==<version> pip install keras==<version> pip install elephas # 可选组件 ``` 注意替换 `<version>` 参数为你实际需要的目标发行版号。 #### 修改脚本实现多核调度优化 当完成上述准备工作之后就可以着手调整 Python 脚本来激活 GPU 功能了。下面给出了一段示范性的代码片段展示怎样定义神经网络结构并通过指定 `with tf.device('/gpu:<id>')` 来强制分配任务到某一块具体的图形处理器上运行: ```python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten from tensorflow.keras.optimizers import Adam model = Sequential() model.add(Flatten(input_shape=(28, 28))) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) opt = Adam(lr=0.001) # Compile model using GPU device context manager. with tf.device('/gpu:0'): model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) ``` 此部分逻辑会告诉操作系统优先调用编号为 '0' 的显卡参与运算过程。 #### 结合 FastAI 工具简化开发体验 除了直接操控底层 API 外,也可以借助更高级别的封装解决方案比如 FastAI 框架来自动生成复杂的流水线作业链路图谱并且自动适配最佳实践模式下的超参组合方案[^3]。这不仅能够显著降低初学者的学习门槛还能有效提升整体工作效率。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱笑的男孩。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值