二叉树
搜索类
前序遍历:
前序遍历的顺序是 根-左-右 思路是:
1. 先将根结点⼊栈
2. 出栈⼀个元素, 将右节点和左节点依次⼊栈
3. 重复 2 的步骤
总结: 典型的递归数据结构, 典型的⽤栈来简化操作的算法。
中序遍历:
中序遍历的顺序是 左-根-右 , 根节点不是先输出, 这就有⼀点点复杂 了。
- 根节点⼊栈
- 判断有没有左节点, 如果有, 则⼊栈, 直到叶⼦节点 此时栈中保存的就是所有的左节点和根节点。
- 出栈, 判断有没有右节点, 有则⼊栈, 继续执⾏ 2
值得注意的是, 中序遍历⼀个⼆叉查找树(BST) 的结果是⼀个有序数 组, 利⽤这个性质有些题⽬可以得到简化
后序遍历:
后序遍历的顺序是 左-右-根。
其实这个也是属于根节点先不输出, 并且根节点是最后输出。 这⾥可以 采⽤⼀种讨巧的做法, 就是记录当前节点状态, 如果:
- 当前节点是叶⼦节点或者
- 当前节点的左右⼦树都已经遍历过了, 那么就可以出栈了。
对于 2.当前节点的左右⼦树都已经遍历过了,只需要用一个变量记录当前节点的状态。
层次遍历
层次遍历的关键点在于如何记录每⼀层次是否遍历完成, 我们可以⽤⼀ 个标识位来表式当前层的结束。
具体做法:
- 根节点⼊队列, 并⼊队列⼀个特殊的标识位, 此处是 null
- 出队列
- 判断是不是 null, 如果是则代表本层已经结束。 我们再次判断是否当 前队列为空, 如果不为空继续⼊队⼀个 null, 否则说明遍历已经完 成, 我们什么都不不⽤做
- 如果不为 null, 说明这⼀层还没完, 则将其左右⼦树依次⼊队列。
双色标记法
我们知道垃圾回收算法中, 有⼀种算法叫三⾊标记法。 即:
- ⽤⽩⾊表示尚未访问
- 灰⾊表示尚未完全访问⼦节点
- ⿊⾊表示⼦节点全部访问
那么我们可以模仿其思想, 使⽤双⾊标记法来统⼀三种遍历。 其核⼼思想如下: - 使⽤颜⾊标记节点的状态, 新节点为⽩⾊, 已访问的节点为灰⾊。
- 如果遇到的节点为⽩⾊, 则将其标记为灰⾊, 然后将其右⼦节点、 ⾃ 身、 左⼦节点依次⼊栈。
- 如果遇到的节点为灰⾊, 则将节点的值输出。
使⽤这种⽅法实现的前序遍历如下:
class Solution {
class MyNode{
TreeNode node;
int color;
public MyNode(TreeNode node, int color){
this.node = node;
this.color = color;
}
}
private static final int WHITE = 0;
private static final int GRAY = 1;
public List<Integer> preorderTraversal(TreeNode root) {
// 保存结果
List<Integer> res = new ArrayList();
if(root == null){
return res;
}
Deque<MyNode> stack = new LinkedList<>();
stack.push(new MyNode(root, WHITE));
while(!stack.isEmpty()){
MyNode tmp = stack.pop();
if(tmp == null){
continue;
}
if(tmp.color == GRAY){
res.add(tmp.node.val);
}else{
if(tmp.node.right != null) stack.push(new MyNode(tmp.node.right, WHITE));
if(tmp.node.left != null) stack.push(new MyNode(tmp.node.left, WHITE));
tmp.color = GRAY;
stack.push(tmp);
}
}
return res;
}
}
Morris 遍历
我们可以使⽤⼀种叫做 Morris 遍历的⽅法, 既不使⽤递归也不借助于 栈。 从⽽在 O(1) 空间完成这个过程。
https://www.educative.io/edpresso/what-is-morris-traversal#