二叉树专题

本文详细介绍了二叉树的四种遍历方法:前序遍历、中序遍历、后序遍历和层次遍历。针对每种遍历方式,不仅给出了常规的递归和栈实现,还探讨了双色标记法的通用解决方案。此外,还提到了Morris遍历这一不使用额外空间的高效方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉树

搜索类

前序遍历:
前序遍历的顺序是 根-左-右 思路是:
1. 先将根结点⼊栈
2. 出栈⼀个元素, 将右节点和左节点依次⼊栈
3. 重复 2 的步骤

总结: 典型的递归数据结构, 典型的⽤栈来简化操作的算法。

中序遍历:
中序遍历的顺序是 左-根-右 , 根节点不是先输出, 这就有⼀点点复杂 了。

  1. 根节点⼊栈
  2. 判断有没有左节点, 如果有, 则⼊栈, 直到叶⼦节点 此时栈中保存的就是所有的左节点和根节点。
  3. 出栈, 判断有没有右节点, 有则⼊栈, 继续执⾏ 2

值得注意的是, 中序遍历⼀个⼆叉查找树(BST) 的结果是⼀个有序数 组, 利⽤这个性质有些题⽬可以得到简化

后序遍历:
后序遍历的顺序是 左-右-根。
其实这个也是属于根节点先不输出, 并且根节点是最后输出。 这⾥可以 采⽤⼀种讨巧的做法, 就是记录当前节点状态, 如果:

  1. 当前节点是叶⼦节点或者
  2. 当前节点的左右⼦树都已经遍历过了, 那么就可以出栈了。

对于 2.当前节点的左右⼦树都已经遍历过了,只需要用一个变量记录当前节点的状态。

层次遍历
层次遍历的关键点在于如何记录每⼀层次是否遍历完成, 我们可以⽤⼀ 个标识位来表式当前层的结束。

具体做法:

  1. 根节点⼊队列, 并⼊队列⼀个特殊的标识位, 此处是 null
  2. 出队列
  3. 判断是不是 null, 如果是则代表本层已经结束。 我们再次判断是否当 前队列为空, 如果不为空继续⼊队⼀个 null, 否则说明遍历已经完 成, 我们什么都不不⽤做
  4. 如果不为 null, 说明这⼀层还没完, 则将其左右⼦树依次⼊队列。

双色标记法
我们知道垃圾回收算法中, 有⼀种算法叫三⾊标记法。 即:

  • ⽤⽩⾊表示尚未访问
  • 灰⾊表示尚未完全访问⼦节点
  • ⿊⾊表示⼦节点全部访问
    那么我们可以模仿其思想, 使⽤双⾊标记法来统⼀三种遍历。 其核⼼思想如下:
  • 使⽤颜⾊标记节点的状态, 新节点为⽩⾊, 已访问的节点为灰⾊。
  • 如果遇到的节点为⽩⾊, 则将其标记为灰⾊, 然后将其右⼦节点、 ⾃ 身、 左⼦节点依次⼊栈。
  • 如果遇到的节点为灰⾊, 则将节点的值输出。

使⽤这种⽅法实现的前序遍历如下:

class Solution {
        
    class MyNode{
        TreeNode node;
        int color;
        public MyNode(TreeNode node, int color){
            this.node = node;
            this.color = color;
        }
    }
    
    private static final int WHITE = 0;
    private static final int GRAY = 1;
    
    public List<Integer> preorderTraversal(TreeNode root) {
        // 保存结果
        List<Integer> res = new ArrayList();
        
        if(root == null){
            return res;
        }
        
        Deque<MyNode> stack = new LinkedList<>();
        stack.push(new MyNode(root, WHITE));

        while(!stack.isEmpty()){
            MyNode tmp = stack.pop();
            if(tmp == null){
                continue;
            }
            
            if(tmp.color == GRAY){
                res.add(tmp.node.val);
            }else{
                if(tmp.node.right != null) stack.push(new MyNode(tmp.node.right, WHITE));
                if(tmp.node.left != null) stack.push(new MyNode(tmp.node.left, WHITE));
                tmp.color = GRAY;
                stack.push(tmp);
            }
        }
        return res;
    }
}

Morris 遍历

我们可以使⽤⼀种叫做 Morris 遍历的⽅法, 既不使⽤递归也不借助于 栈。 从⽽在 O(1) 空间完成这个过程。

https://www.educative.io/edpresso/what-is-morris-traversal#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值