200. 岛屿数量(并查集)

这篇博客介绍了一种解决LeetCode上的200号问题——计算二维网格中岛屿数量的方法。通过创建并查集数据结构,遍历网格并连接相邻的陆地单元格,最终计算并查集中根节点的数量得出答案。示例展示了如何实现并查集模板以及如何应用到具体问题中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package com.heu.wsq.leetcode.bingchaji;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

/**
 * 200. 岛屿数量
 * @author wsq
 * @date 2021/4/7
 * 给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
 * 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
 * 此外,你可以假设该网格的四条边均被水包围。
 *
 * 示例 1:
 * 输入:grid = [
 *   ["1","1","1","1","0"],
 *   ["1","1","0","1","0"],
 *   ["1","1","0","0","0"],
 *   ["0","0","0","0","0"]
 * ]
 * 输出:1
 *
 * 链接:https://leetcode-cn.com/problems/number-of-islands
 */
public class NumIslands {
    /**
     * 构建方向数组
     */
    private int[][] d = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

    public int numIslands(char[][] grid) {
        // 获取网格的维度的大小
        int m = grid.length;
        int n = grid[0].length;

        // 存储1的位置
        List<Integer> list = new ArrayList<>();

        UnionFind unionFind = new UnionFind(n * m);

        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(grid[i][j] == '1'){
                    list.add(i * n + j);
                    for(int[] t : d){
                        int x = i + t[0];
                        int y = j + t[1];
                        if(x < 0 || x >= m || y < 0 || y >= n){
                            continue;
                        }
                        if(grid[x][y] == '1'){
                            unionFind.union(i * n + j, x * n + y);
                        }
                    }
                }
            }
        }
        Set<Integer> set = new HashSet<>();
        for(int e : list){
            int rootE = unionFind.find(e);
            set.add(rootE);
        }
        return set.size();
    }

    /**
     * 并查集模板
     * 实现带路径压缩的并查集
     */
    class UnionFind{
        private int[] parent;

        public UnionFind(int n){
            parent = new int[n];
            for(int i = 0; i < n; i++){
                parent[i] = i;
            }
        }

        public void union(int x, int y){
            int rootX = find(x);
            int rootY = find(y);

            if(rootX == rootY){
                return;
            }
            parent[rootX] = rootY;
        }

        public int find(int x){
            if(parent[x] != x){
                parent[x] = find(parent[x]);
            }
            return parent[x];
        }

        public boolean isConnected(int x, int y){
            return find(x) == find(y);
        }
    }
}

### 使用并查集算法计算岛屿数量 #### 1. 基本概念 并查集是一种用于处理动态连通性的数据结构,能够高效地支持集合的合并操作以及查询两个元素是否属于同一个集合的操作。在解决岛屿数量问题时,可以将每个格子看作一个节点,如果某个格子是陆地(`'1'`),则将其与其他相邻的陆地格子通过并查集连接起来。 #### 2. 初始化并查集 为了初始化并查集,需要创建一个数组 `head` 来存储每个节点的父亲节点,并设置初始状态为每个节点都是自己的父亲节点[^1]。同时还需要维护一个数组 `level` 记录树的高度以便优化合并过程。 ```cpp void create(int head[], int level[], int n) { for (int i = 0; i < n; i++) { head[i] = i; level[i] = 1; } } ``` #### 3. 查找函数 查找函数的作用是找到当前节点所属集合的根节点。在此过程中还可以应用路径压缩技术,即将沿途经过的所有节点直接挂载到根节点下,从而加速后续查找操作。 ```cpp int find(int x, int head[]) { if (x == head[x]) return x; return head[x] = find(head[x], head); } ``` #### 4. 合并函数 当发现两个不同的陆地格子之间存在邻接关系时,就需要调用合并函数将它们所在的集合合并在一起。这里采用按秩合并策略,优先把较矮的小树接到大树下面以保持整体平衡性。 ```cpp void merge(int level[], int head[], int x, int y) { x = find(x, head); y = find(y, head); if (x == y) return; if (level[x] <= level[y]) { head[x] = y; } else { head[y] = x; } if (level[x] == level[y]) level[y]++; } ``` #### 5. 主体逻辑 对于输入矩阵中的每一个位置 `(i, j)` ,如果是陆地 `'1'` 则尝试与其上下左右四个方向上的邻居进行判断是否有相连的情况;如果有,则执行相应的合并动作。最终统计独立集合数目即得到岛屿总数。 ```cpp class Solution { public: int numIslands(vector<vector<char>>& grid) { if (grid.empty()) return 0; int m = grid.size(); int n = grid[0].size(); vector<int> parent(m * n, -1); auto isValid = [&](int r, int c) -> bool { return r >= 0 && r < m && c >= 0 && c < n && grid[r][c] == '1'; }; function<int(int)> find_set = [&](int x) -> int { if (parent[x] != x) { parent[x] = find_set(parent[x]); } return parent[x]; }; function<void(int, int)> union_set = [&](int x, int y) -> void { int fx = find_set(x), fy = find_set(y); if (fx != fy) { parent[fy] = fx; } }; // Initialize disjoint sets. for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '1') { parent[i * n + j] = i * n + j; } } } // Union adjacent lands. for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '1') { if (isValid(i + 1, j)) union_set(i * n + j, (i + 1) * n + j); if (isValid(i, j + 1)) union_set(i * n + j, i * n + j + 1); } } } unordered_set<int> islands; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '1') { islands.insert(find_set(i * n + j)); } } } return islands.size(); } }; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值