package com.heu.wsq.basic.sort_algorithm;
/**
* 归并排序
* @author wsq
* @date 2021/4/16
* 归并排序是建立在归并操作上的一种有效的排序算法。
* 该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
* 将已有序的子序列合并,得到完全有序的序列;
* 即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
*
* 算法描述:
* 1. 把长度为n的输入序列分成两个长度为n/2的子序列;
* 2. 将这两个子序列分别采用归并排序
* 3. 将两个子序列合并为一个最终的排序序列。
*/
public class MergeSort {
private int[] aux;
public void sort(int[] nums){
int n = nums.length;
aux = new int[n];
sort(nums, 0, n-1);
}
private void sort(int[] nums, int left, int right) {
if(left >= right){
return;
}
int mid = (left + right) >> 1;
sort(nums, left, mid);
sort(nums, mid + 1, right);
merge(nums, left, mid, right);
}
private void merge(int[] nums, int left, int mid, int right) {
// 将nums数组复制到aux辅助数组中
for (int i = left; i <= right; i++){
aux[i] = nums[i];
}
// 利用aux辅助数组排序原数组
int l = left;
int r = mid + 1;
for (int i = left; i <= right; i++){
if(l > mid){
// 左边已排序数组已经用完了
nums[i] = aux[r++];
}else if(r > right){
// 右边已排序的数组已经用完
nums[i] = aux[l++];
}else if(aux[l] < aux[r]){
nums[i] = aux[l++];
}else {
nums[i] = aux[r++];
}
}
}
/**
* 自底向上 归并排序========================
*/
public void sort2(int[] nums){
int n = nums.length;
this.aux = new int[n];
for(int sz = 1; sz < n; sz += sz){
for(int i = 0; i < n - sz; i += sz + sz){
merge(nums, i, i + sz - 1, Math.min(i + sz + sz - 1, n - 1));
}
}
}
public static void main(String[] args) {
int[] arr = {4, 9, 2, 3, 1, 8, 6, 0};
MergeSort mergeSort = new MergeSort();
// mergeSort.sort(arr);
mergeSort.sort2(arr);
for (int i = 0; i < arr.length; i++){
System.out.print(arr[i] + ",");
}
}
}
归并排序
最新推荐文章于 2025-06-13 15:06:56 发布