5765. 跳跃游戏 VII(动态规划+前缀和优化)

package com.heu.wsq.leetcode.zhousai.so3;

/**
 * 5765. 跳跃游戏 VII
 * @author wsq
 * @date 2021/5/23
 * 给你一个下标从 0 开始的二进制字符串 s 和两个整数 minJump 和 maxJump 。一开始,你在下标 0 处,且该位置的值一定为 '0' 。当同时满足如下条件时,你可以从下标 i 移动到下标 j 处:
 * i + minJump <= j <= min(i + maxJump, s.length - 1) 且
 * s[j] == '0'.
 * 如果你可以到达 s 的下标 s.length - 1 处,请你返回 true ,否则返回 false 。
 *
 * 示例 1:
 * 输入:s = "011010", minJump = 2, maxJump = 3
 * 输出:true
 * 解释:
 * 第一步,从下标 0 移动到下标 3 。
 * 第二步,从下标 3 移动到下标 5 。
 *
 * 链接:https://leetcode-cn.com/problems/jump-game-vii
 */
public class Solution2 {
    /**
     * 动态规划,使用前缀和进行时间优化,不然会超时
     * @param s
     * @param minJump
     * @param maxJump
     * @return
     */
    public boolean canReach(String s, int minJump, int maxJump) {
        if(s == null || s.length() == 0){
            return true;
        }
        int n = s.length();
        char[] arr = s.toCharArray();

        if(arr[n-1] != '0' || arr[0] != '0'){
            return false;
        }
        // 定义动态规划状态数组
        // dp[i]表示是否能由[i-maxJump, i-minJump]范围内跳到该索引的可能
        // 当索引i对应元素为1时,dp[i] = false
        // 当索引i对应元素为0时,dp[i] = dp[j] || dp[i] (j在上面的范围内,存在dp[j]为可抵达的状态,dp[i] = true)
        boolean[] dp = new boolean[n];
        dp[0] = true;
        // 定义前缀和数组,表示dp状态数组的前缀求和,true表示为1,false表示为0
        int[] pre = new int[n];
        pre[0] = 1;

        int i;
        // 小于minJump的位置都是不可达的,pre[1:minJump]都是1+0的情况
        for(i = 1; i < minJump; i++){
            pre[i] = 1;
        }

        for(i = minJump; i < n; i++){
            if(arr[i] == '0'){
                int left = i - maxJump, right = i - minJump;
                int total = pre[right] - (left <= 0 ? 0 : pre[left - 1]);
                // total不为0时,表示left到right的范围内存在可抵达的节点
                dp[i] = total != 0;
            }
            pre[i] = pre[i-1];
            if(dp[i]){
                pre[i] += 1;
            }
        }
        return dp[n-1];
    }

    public static void main(String[] args) {
        String s = "011010";
        Solution2 solution2 = new Solution2();
        boolean ans = solution2.canReach(s, 2, 3);
        System.out.println(ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值