R-MSFM: 单目深度估计的循环多尺度特征调制
摘要:
单目深度估计是计算机视觉中的重要任务之一,它可以为许多应用提供关键的几何信息。然而,由于单目图像的信息有限性质,单目深度估计面临着挑战。本文提出了一种名为循环多尺度特征调制(Recurrent Multi-Scale Feature Modulation, R-MSFM)的方法,通过结合多尺度特征和循环神经网络,来改善单目深度估计的性能。实验结果表明,我们的方法在不同数据集上取得了优于现有方法的结果。
引言:
随着计算机视觉技术的发展,单目深度估计在自动驾驶、增强现实等领域变得越来越重要。然而,由于缺乏立体图像所具有的双目视差信息,单目深度估计任务面临着一些困难。因此,提高单目深度估计的精度和鲁棒性是一个具有挑战性的问题。
方法:
本文提出了R-MSFM方法,它通过循环多尺度特征调制来改善单目深度估计的性能。该方法主要分为以下几个步骤:
-
特征提取: 首先,我们使用一个预训练的卷积神经网络来提取输入图像的特征。这些特征具有不同的尺度和语义信息。
-
多尺度特征融合: 然后,我们对提取的特征进行多尺度调制。通过采用不同的滤波器和卷积操作,我们可以提取不同尺度的特征,并将它们进行融合。这种融合的方式有助于捕捉图像的全局和局部特征。
-
循环神经网络: 在融合的特征上,我们引入了一个循环神经网络&