题目:51nod 1134
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1134
2 <= N <= 50000 N^2肯定要超时的。
动态规划思想,dp[i]表示长度为i的LIS的最小结尾。
如一组数:5 1 6 8 2 4 5 10
初始dp[1]=5,因为1<5, 更新dp[1]=1。6>1,更新dp[2]=6,依次更新为dp[3]=8,dp[2]=2,dp[3]=4,dp[4]=5,dp[5]=10。
注意dp数组不一定是LIS。
如何更新dp呢?dp数组其实是一个严格递增的数组,我们在更新dp[2]=2时,dp={1,6,8},我们需要把6替换为2,也就是说我们需要找到能把2插入的位置,问题很好解决,lower_bound二分查找就可以解决啦。
以下为核心代码:
int LIS(int *arr, int n){
int *dp=new int [n+5];
int where, idx = 1;
dp[idx] = arr[0];///dp[i]表示长度为i的上升子序列的最小结尾
for (int i = 1; i < n; ++i){
if (arr[i]>dp[idx]){
idx++;
dp[idx] = arr[i];
}
else{
where = lower_bound(dp+1, dp + idx+1, arr[i]) - dp;
dp[where] = min(dp[where], arr[i]);
}
}
delete[] dp;
return idx;
}