[牛客题霸-研发] NC127-最长公共子串

[牛客题霸-研发] NC127-最长公共子串

----------------------------------------------本题链接----------------------------------------------

题目描述

给定两个字符串str1和str2,输出两个字符串的最长公共子串,如果最长公共子串为空,输出-1。

示例

输入
"1AB2345CD","12345EF"

返回值
"2345"

思路

动态规划问题
假设两个字符串长度为n、m,具体分析其问题:

  1. 最优子结构:如果知道 n-1、m-1 长度字符串的最长公共子串s,则 n、m 长度字符串最长公共子串为 s+1(当最后字符相同时) 或者 s(当最后字符不同时)
  2. 重叠子问题:为确定 n、m 长度字符串最长公共子串,需要知道n-1、m-1 长度字符串的最长公共子串;为确定 n-1、m-1 长度字符串最长公共子串,需要知道n-2、m-2 长度字符串的最长公共子串。。。
  3. 状态转移方程
    d p ( n , m ) = { 0 , n = 0 o r m = 0 d p ( n − 1 , m − 1 ) + 1 , n > 0 & m > 0 dp(n, m)=\left\{ \begin{aligned} & 0 ,& n=0 \quad or \quad m =0\\ & dp(n-1,m-1) + 1 ,& n>0 \quad \& \quad m > 0 \\ \end{aligned} \right. dp(n,m)={0dp(n1,m1)+1,n=0orm=0n>0&m>0

如何列出正确的状态转移方程:

  1. 确定「base case」: 某一字符串为空时,匹配不到公共子串,返回0
  2. 确定「状态」 (也就是原问题和子问题中会变化的变量):两个字符串的长度会不断向 base case 靠近,所以「状态」就是两个字符串的长度
  3. 确定「选择」(也就是导致「状态」产生变化的行为):我们每拿出一个字符进行匹配,就越离我们的目标找到最长公共子串越接近。
  4. dp数组的定义:输入两个字符串长度,返回当前最长公共子串长度

推荐大佬总结的动态规划问题:labuladong的算法小抄

算法过程

  1. 判断异常情况
  2. 初始化dp数组
  3. 做选择
  4. 满足条件则更新dp数组,同时记录最长公共子串长度和初始位置
  5. 确定最长公共子串

解答

public class Solution {
    /**
     * longest common substring
     * @param str1 string字符串 the string
     * @param str2 string字符串 the string
     * @return string字符串
     */
    public String LCS (String str1, String str2) {
        if(str1 == null || str2 == null || str1.equals("") || str2.equals(""))
            return "-1";
        
        int m = str1.length(), n = str2.length(), res = 0, pos = 0;
        // 初始化dp
        int[][] dp = new int[m+1][n+1];
        
        for(int i = 1; i <= m; i++){
            char c1 = str1.charAt(i-1);
            for(int j = 1; j <= n; j++){
                char c2 = str2.charAt(j-1);
                if(c1 == c2){
                    dp[i][j] = dp[i-1][j-1] + 1;
                    if(dp[i][j] > res){
                        res = dp[i][j];
                        pos = i;
                    }
                }
            }
        }
        return res == 0 ? "-1" : str1.substring(pos - res, pos);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值