【和题目没有一点关系的编程题目~~~可能的二分法】

题目描述

给定一组 n 人(编号为 1, 2, ..., n), 我们想把每个人分进任意大小的两组。每个人都可能不喜欢其他人,那么他们不应该属于同一组。

给定整数 n 和数组 dislikes ,其中 dislikes[i] = [ai, bi] ,表示不允许将编号为 ai 和  bi的人归入同一组。当可以用这种方法将所有人分进两组时,返回 true;否则返回 false。

 

示例 1:

输入:n = 4, dislikes = [[1,2],[1,3],[2,4]]
输出:true
解释:group1 [1,4], group2 [2,3]
示例 2:

输入:n = 3, dislikes = [[1,2],[1,3],[2,3]]
输出:false
示例 3:

输入:n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
输出:false
 

提示:

1 <= n <= 2000
0 <= dislikes.length <= 104
dislikes[i].length == 2
1 <= dislikes[i][j] <= n
ai < bi
dislikes 中每一组都 不同


题目思路

  1. 这个题目有多种解题思路,dfs,bfs,以及并查集。
  2. 由于题目最后只有两组,所以某一个人全部不喜欢人一定会在同一个组中,我们可以用「并查集」进行连接,并判断这个人是否与他不喜欢的人相连,如果相连则表示存在冲突,否则说明此人和他不喜欢的人在当前可以进行合法分组。

解题代码

class Solution {
    public boolean possibleBipartition(int n, int[][] dislikes) {
        UnionFind unionFind=new UnionFind(2*n+2);
        List<Integer>[] list = new ArrayList[n + 1];
        for (int i = 0; i <= n; ++i) {
            list[i] = new ArrayList<Integer>();
        }
        for (int[] temp : dislikes) {
            list[temp[0]].add(temp[1]);
            list[temp[1]].add(temp[0]);
        }
        for(int i=1;i<=n;i++){
            for(int j=1;j<list[i].size();j++){
                unionFind.union(list[i].get(0),list[i].get(j));
                if(unionFind.isconnect(i,list[i].get(j))) return false;
            }
        }
        return true;
    }


    private class UnionFind {

        private int[] parent;

        private int count;

        public int getCount() {
            return count;
        }

        public UnionFind(int n) {
            this.count = n;
            this.parent = new int[n];
            for (int i = 0; i < n; i++) {
                parent[i] = i;
            }
        }

        public int find(int x) {
            while (x != parent[x]) {
                parent[x] = parent[parent[x]];
                x = parent[x];
            }
            return x;
        }

        public void union(int x, int y) {
            int rootX = find(x);
            int rootY = find(y);
            if (rootX == rootY) {
                return;
            }

            parent[rootX] = rootY;
            count--;
        }

        public boolean isconnect(int a,int b){
            a=find(a);
            b=find(b);
            return a==b;
        }
    }
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值