【LeetCode每日一题: 516. 最长回文子序列 | 暴力递归=>记忆化搜索=>动态规划 | 区间dp 】

在这里插入图片描述

🍎作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🍎座右铭:人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯🎯

在这里插入图片描述

题目链接

516. 最长回文子序列

题目描述

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:
输入:s = “bbbab”
输出:4
解释:一个可能的最长回文子序列为 “bbbb” 。

示例 2:
输入:s = “cbbd”
输出:2
解释:一个可能的最长回文子序列为 “bb” 。

提示:

1 <= s.length <= 1000
s 仅由小写英文字母组成

求解思路&实现代码&运行结果

暴力递归

求解思路
  1. 为了能够让同学们更好的理解这个过程,我特意将整个思考的过程以及作图的过程都绘制在下面这张图中,希望可以通过下面这张图更好的帮助你理解整个过程,大家可以结合这张图来理解整个题目的求解思路。
    在这里插入图片描述
实现代码

注意,代码的实现方式可以有很多,大家根据自己的习惯来就好

class Solution {
    public int longestPalindromeSubseq(String s) {
        if(s==null||s.length()<=0) return 0;
        int n=s.length();
        return process(0,n-1,s);
    }

    public int process(int left,int right,String s){
        if(left==right) return 1;
        if(left>right) return 0;
        if(s.charAt(left)==s.charAt(right)){
            return process(left+1,right-1,s)+2;
        }
        return Math.max(process(left+1,right,s),process(left,right-1,s));
    }
}
运行结果

大家不要看到时间超限就害怕,相反,看到这个我们更应该放心,使我们期待的结果。

在这里插入图片描述

记忆化搜索

求解思路
  1. 核心思路就是我们上面的求解过程,如果没有理解可以继续看上面的图解过程。
  2. 在原来的基础上加缓存表,将结果进行记录,避免重复计算。
实现代码
class Solution {
    public int longestPalindromeSubseq(String s) {
        if(s==null||s.length()<=0) return 0;
        int n=s.length();
        int[][] dp=new int[n][n];
        for(int i=0;i<n;i++) Arrays.fill(dp[i],-1);
        return process(0,n-1,s,dp);
    }

    public int process(int left,int right,String s,int[][] dp){
        if(dp[left][right]!=-1) return dp[left][right];
        if(left==right) return dp[left][right]=1;
        if(left>right) return dp[left][right]=0;
        if(s.charAt(left)==s.charAt(right)){
            return dp[left][right]=process(left+1,right-1,s,dp)+2;
        }
        return dp[left][right]=Math.max(process(left+1,right,s,dp),process(left,right-1,s,dp));
    }
}
运行结果

加个缓存表就是香,通过!
在这里插入图片描述

动态规划

求解思路
  1. 同理,核心求解思路我们上面已经讲过了,此处不同的是原来通过递归,此时我们通过dp数组和循环即可完成。
实现代码

继续改进!

class Solution {
    public int longestPalindromeSubseq(String s) {
        if(s==null||s.length()<=0) return 0;
        int n=s.length();
        int[][] dp=new int[n][n];
        for(int i=0;i<n;i++) dp[i][i]=1;
        for(int left=n-1;left>=0;left--){
            for(int right=left+1;right<n;right++){
                if(s.charAt(left)==s.charAt(right)){
                    dp[left][right]= dp[left+1][right-1]+2;
                }else{
                    dp[left][right]=Math.max(dp[left+1][right],dp[left][right-1]);
                }
            }
        }
        return dp[0][n-1];
    }
}
运行结果

在这里插入图片描述

共勉

最后,我想送给大家一句一直激励我的座右铭,希望可以与大家共勉!
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值