【LeetCode股票买卖系列:714. 买卖股票的最佳时机含手续费 | 暴力递归=>记忆化搜索=>动态规划】

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

🚗 知识回顾

大家在学习这道题目之前,可以先去看一下买卖股票最佳时机1,再看这个题目就更容易理解了。
博客的地址放到这里了,可以先去学习一下这到题目。

🚩 题目链接

⛲ 题目描述

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:

1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104

🌟 求解思路&实现代码&运行结果


⚡ 暴力法

🥦 求解思路
  1. 首先该题目核心求解思路我们之前也已经讲过了,不会的同学可以看一下之前的文章内容;
  2. 我们将这道题目区别于其它股票题目不同的内容标记出来,可以多次买卖 && 买卖一次股票需要fee费用;
  3. 第一个限制条件我们怎么去做,前面都已经讲过了,我们着重看一下第二个限制条件,第二个条件其实也比较简单,主要就是如果当前我们持有股票,并且答案是来自此时我们需要买入的时候,那么此时需要减去我们fee的费用。
  4. 接下来我们就来实现一下具体的代码。
🥦 实现代码
class Solution {
    int[] prices;
    int fee;
    public int maxProfit(int[] prices,int fee) {
        this.prices=prices;
        this.fee=fee;
        int n=prices.length;
        return process(n-1,0);
    }

    public int process(int i,int flag){
        if(i<0) return flag==1?Integer.MIN_VALUE:0;
        if(flag==1) return Math.max(process(i-1,1),process(i-1,0)-prices[i]-fee);
        return Math.max(process(i-1,0),process(i-1,1)+prices[i]);
    }
}
🥦 运行结果

果然不出我们所料,时间超限了,不要紧张,我们来继续优化它!

在这里插入图片描述


⚡ 记忆化搜索

🥦 求解思路
  1. 因为在递归的过程中,会重复的出现一些多次计算的结果,我们通过开辟一个数组,将结果提前缓存下来,算过的直接返回,避免重复计算,通过空间来去换我们的时间。
🥦 实现代码
class Solution {
    int[] prices;
    int[][] dp;
    int fee;
    public int maxProfit(int[] prices,int fee) {
        this.prices=prices;
        this.fee=fee;
        int n=prices.length;
        dp=new int[n][2];
        for(int i=0;i<n;i++) Arrays.fill(dp[i],-1);
        return process(n-1,0);
    }

    public int process(int i,int flag){
        if(i<0) return flag==1?Integer.MIN_VALUE:0;
        if(dp[i][flag]!=-1) return dp[i][flag];
        if(flag==1) return dp[i][flag]=Math.max(process(i-1,1),process(i-1,0)-prices[i]-fee);
        return dp[i][flag]=Math.max(process(i-1,0),process(i-1,1)+prices[i]);
    }
}
🥦 运行结果

加一个缓存表,通过!!!
在这里插入图片描述


⚡ 动态规划

🥦 求解思路
  1. 有了递归,有了记忆化搜索,接下来就是动态规划了,直接上手。
🥦 实现代码
class Solution {
    int[] prices;
    int[][] dp;
    int fee;
    public int maxProfit(int[] prices,int fee) {
        this.prices=prices;
        this.fee=fee;
        int n=prices.length;
        dp=new int[n][2];
        dp[0][0]=0;
        dp[0][1]=-prices[0]-fee;
        for(int i=1;i<n;i++){
            dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]-fee);
            dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);
        }
        return dp[n-1][0];
    }
}
🥦 运行结果

搞定,简直不要太爽!
在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值