【Leetcode:3127. 构造相同颜色的正方形 + 模拟】

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述
在这里插入图片描述

🚩 题目链接

⛲ 题目描述

给你一个二维 3 x 3 的矩阵 grid ,每个格子都是一个字符,要么是 ‘B’ ,要么是 ‘W’ 。字符 ‘W’ 表示白色,字符 ‘B’ 表示黑色。

你的任务是改变 至多一个 格子的颜色,使得矩阵中存在一个 2 x 2 颜色完全相同的正方形。

如果可以得到一个相同颜色的 2 x 2 正方形,那么返回 true ,否则返回 false 。

示例 1:
在这里插入图片描述
输入:grid = [[“B”,“W”,“B”],[“B”,“W”,“W”],[“B”,“W”,“B”]]

输出:true

解释:

修改 grid[0][2] 的颜色,可以满足要求。

示例 2:

在这里插入图片描述
输入:grid = [[“B”,“W”,“B”],[“W”,“B”,“W”],[“B”,“W”,“B”]]

输出:false

解释:

只改变一个格子颜色无法满足要求。

示例 3:
在这里插入图片描述

输入:grid = [[“B”,“W”,“B”],[“B”,“W”,“W”],[“B”,“W”,“W”]]

输出:true

解释:

grid 已经包含一个 2 x 2 颜色相同的正方形了。

提示:

grid.length == 3
grid[i].length == 3
grid[i][j] 要么是 ‘W’ ,要么是 ‘B’ 。

🌟 求解思路&实现代码&运行结果


⚡ 模拟

🥦 求解思路
  1. 首先要理解题目的意思,可以改变一个格子颜色的的前提下,是否存在一个 2 x 2 颜色完全相同的正方形。
  2. 直接模拟遍历给定的grid数组,判断 2 * 2 大小的正方形中 ‘W’ 和 ‘B’ 的元素个数,因为题目中规定,我们至少可以修改一次格子的颜色,所以,如果此时 ‘W’ 或者 ‘B’ 元素出现的次数是大于等于3的,直接结束。
  3. 有了基本的思路,接下来我们就来通过代码来实现一下的解法。
🥦 实现代码
class Solution {
    public boolean canMakeSquare(char[][] grid) {
        int m = grid.length, n = grid[0].length;
        if (m < 2 || n < 2)
            return false;
        for (int i = 0; i < m - 1; i++) {
            for (int j = 0; j < n - 1; j++) {
                if (check(grid[i][j], grid[i][j + 1], grid[i + 1][j], grid[i + 1][j + 1])) {
                    return true;
                }
            }
        }
        return false;
    }

    public boolean check(int a, int b, int c, int d) {
        int cntW = 0, cntB = 0;
        if (a == 'W') {
            cntW++;
        }
        if (b == 'W') {
            cntW++;
        }
        if (c == 'W') {
            cntW++;
        }
        if (d == 'W') {
            cntW++;
        }
        if (a == 'B') {
            cntB++;
        }
        if (b == 'B') {
            cntB++;
        }
        if (c == 'B') {
            cntB++;
        }
        if (d == 'B') {
            cntB++;
        }
        return cntW >= 3 || cntB >= 3;
    }
}
🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值