鱼跃龙门——扩展欧几里得与唯一分解定理的巧妙运用

题目描述

给定一个正整数 n n n,一共有 n n n 座龙门,跳过第 j ( j < n ) j (j < n) j(j<n) 座龙门将会到达第 j + 1 j+1 j+1 座龙门前,特殊地,跳过第 n n n 座龙门后将会到达第 1 1 1 座龙门前。
胖头鱼一开始在第一座龙门前,接下来,第 i i i 个时刻内它会向前跳 i i i 次,每次跳过 1 1 1 座龙门,求最小的正整数 x x x 满足第 x x x 个时刻结束后胖头鱼恰好会回到起点。

输入格式

第一行一个整数 T T T,表示数据组数。
接下来 T T T 行,每行一个整数 n n n,表示一共有 n n n 座龙门。

输出格式

一共 T T T 行,每行一个整数 x x x,表示答案。

输入样例1

5
2
4
6
8
10

输出样例1

3
7
3
15
4

样例解释1

n = 10 n=10 n=10 的样例解释:
一开始在 1 1 1 的前面也就是位置 0 0 0
第一时刻跳一步到 ( 0 + 1 )   m o d   n = 1 (0+1)\bmod n = 1 (0+1)modn=1
第二时刻跳两步到 ( 1 + 2 )   m o d   n = 3 (1+2)\bmod n = 3 (1+2)modn=3
第三时刻跳三步到 ( 3 + 3 )   m o d   n = 6 (3+3)\bmod n = 6 (3+3)modn=6
第四时刻跳四步到 ( 6 + 4 )   m o d   n = 0 (6+4)\bmod n = 0 (6+4)modn=0
第四时刻后恰好跳回原点 0 0 0,所以答案为 4 4 4

输入样例2

10
200479710
1041705379
766770747
257088468
877586977
86834214
757618747
884911150
388001368
494728090

输出样例2

30464759
9427197
74899308
9020648
877586976
43417107
96416647
212378675
43718463
36697240

数据范围

对于 10 % 10\% 10% 的数据 1 ≤ T ≤ 10 , 1 ≤ n ≤ 10 1 \leq T \leq 10, 1 \leq n \leq 10 1T10,1n10
对于全部的数据 1 ≤ T ≤ 100 , 1 ≤ n ≤ 1 0 12 1 \leq T \leq 100, 1 \leq n \leq 10^{12} 1T100,1n1012

题目解答

这题初看起来很像扩欧,像我这样的蒟蒻就像直接套板子了。但可惜的是,虽然这道题需要使用扩欧,可并不能直接使用,而是要经过一系列复杂的变换才可以。那我们就开始题解部分:

  • 首先,根据求和公式,容易发现就是求式子 n ∣ 1 2 × x × ( x + 1 ) n \mid \frac{1}{2} \times x \times (x + 1) n21×x×(x+1) 的最小正整数解 x x x
  • 接着两边同时乘二,得到 2 n ∣ x × ( x + 1 ) 2n \mid x \times (x + 1) 2nx×(x+1)

显然,我们不可能使用二次公式计算,所以要换一种方法。由于 x x x x + 1 x + 1 x+1 互质,所以我们可以尝试对 2 n 2n 2n 进行质因数分解:
2 n = ∏ i = 1 s p i k i 2n = \prod_{i = 1}^{s} p_i^{k_i} 2n=i=1spiki

  • 其中每个 p i p_i pi 都是质数,必定与 p j ( i ≠ j ) p_j (i \neq j) pj(i=j) 互质,所以只要对它的每一个质因子进行枚举子集即可得到两个乘积为 n n n 且互质的数

虽然枚举两个数的乘积可以被 n n n 整除且互质,但它们的差值不一定为 1 1 1。并不一定能构成 x × ( x + 1 ) x \times (x + 1) x×(x+1) 的形式,所以这时候,扩展欧几里得就派上了用场。若我们当前在质因数中枚举出的两个数为 a , b a, b a,b,就可以把它转换成以下式子:
a p − b q = 1 ap - bq = 1 apbq=1

  • 在这里,我们将 a a a b b b 扩大一定倍数后去满足它们的差为 1 1 1 这一性质。 a p ap ap 表示的就是 x + 1 x + 1 x+1,而 b q bq bq 相对应的就为 x x x 了,恰好就是一个扩欧标准的方程
  • 由于 n ∣ a × b n \mid a \times b na×b ,那么 n ∣ a p × b q n \mid ap \times bq nap×bq,方程里的值满足能将 n n n 整除。

不过还要注意两点:

  • 因为扩展欧几里得求解的是 a x + b y = c ax + by = c ax+by=c,与上面的方程符号相反,而题目要求的是最小的正整数,所以求解的应该是 b b b 的最大负整数解
  • 由于题目里的数据较大,直接分解质因数可能超时,所以应该使用筛法加速这一过程

AC代码

#include <bits/stdc++.h>
using namespace std;
long long t, n, ans, pos, x, y, idx, cntp[1000005], primes[1000005];
bool nPrime[1000005];

void euler(int n)
{
    for (int i = 2; i <= n; i++)
    {
        if (!nPrime[i])
            primes[++pos] = i;
        for (int j = 1; j <= pos && i * primes[j] <= n; j++)
        {
            nPrime[i * primes[j]] = true;
            if (i % primes[j] == 0)
                break;
        }
    }
}

long long exgcd(long long a, long long b, long long &x, long long &y)
{
    if (!b)
    {
        x = y = 1;
        return a;
    }
    long long d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

void dfs(int cur, long long a, long long b)
{
    if (cur > idx)
    {
        exgcd(a, b, x, y);
        y = -y % a; // 取最大负整数解
        if (y <= 0) // 解仍然可能小于等于0,应该加上a
            y += a;
        ans = min(ans, y * b); // y * b就为答案x,用结果更新ans
        return;
    }
    dfs(cur + 1, a * cntp[cur], b);
    dfs(cur + 1, a, b * cntp[cur]);
}

int main()
{
    euler(1e6);
    scanf("%lld", &t);
    while (t--)
    {
        scanf("%lld", &n);
        n <<= 1, ans = LONG_LONG_MAX, idx = 0;
        for (int i = 1; i <= pos && primes[i] * primes[i] <= n; i++) // 质因数分解,使用筛法加速
            if (n % primes[i] == 0)
            {
                cntp[++idx] = 1; // cntp数组用来存每个pi^ki
                while (n % primes[i] == 0)
                {
                    n /= primes[i];
                    cntp[idx] *= primes[i];
                }
            }
        if (n > 1)
            cntp[++idx] = n;
        dfs(1, 1, 1);
        printf("%lld\n", ans);
    }
    return 0;
}

本期博客就到这里了,若注解有误,还请跟为大佬多多指教。
如果觉得写得好的话,还可以点赞 + 收藏 ^ ⌣ ^ \hat{} \smile \hat{} ^^

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值