吴恩达-机器学习公开课 学习笔记 Week1-1 Introduction
1-1 Introduction课程内容
此文为Week1 中Introduction的部分。主要内容相当于绪论,大概的介绍了机器学习的基本概念和相关定义。
- 目的:对机器学习有大概的了解
1-1-1 Welcome
简单介绍,例举了一些生活中运用机器学习的例子(搜索引擎、垃圾邮件过滤器),以及时代背景——有用有钱快学吧
1-1-2 What is Machine Learning?
第一个知识点来啦——
机器学习的定义
一个程序被认为能从经验E中学习,解决任务 T,达到 性能度量值P,当且仅当,有了经验E后,经过P评判, 程序在处理 T 时的性能有所提升。
给一个例子帮助理解:
一个西洋棋菜鸟程序员通过编程,让西洋棋程序自己跟自己下了上万盘棋。通过观察 哪种布局(棋盘位置)会赢,哪种布局会输, 久而久之,这西洋棋程序明白了什么是好的布局, 什么样是坏的布局。然后就牛逼大发了,程序通过学习后, 玩西洋棋的水平超过了程序员。
=============
经验e: 程序上万次的自我练习的经验
任务 t :下棋
性能度量值 p:它在与一些新的对手比赛时,赢得比赛的概率。
学习算法主要的两种类型
目前的学习算法主要分为两种——监督学习和无监督学习。
1-1-3 Supervised Learning
监督学习的定义
eg1 【回归问题】房价的预测
通过收集的数据(红叉),依据直线(紫线)or平方函数(蓝线),对于一个新房子的房价(绿色)的预测?这其实是个回归问题。
此处引入监督学习概念:
In supervised learning, we are gi

本文为吴恩达机器学习公开课Week1的Introduction部分,主要介绍了机器学习的基本概念,包括机器学习的定义、监督学习与无监督学习的区别及应用场景。监督学习涉及回归与分类问题,无监督学习则探讨了聚类与非聚类算法。
最低0.47元/天 解锁文章
693





