【含课程pdf & 测验答案】吴恩达-机器学习公开课 学习笔记 Week1-1 Introduction

本文为吴恩达机器学习公开课Week1的Introduction部分,主要介绍了机器学习的基本概念,包括机器学习的定义、监督学习与无监督学习的区别及应用场景。监督学习涉及回归与分类问题,无监督学习则探讨了聚类与非聚类算法。

1-1 Introduction课程内容

此文为Week1 中Introduction的部分。主要内容相当于绪论,大概的介绍了机器学习的基本概念和相关定义。
  • 目的:对机器学习有大概的了解

1-1-1 Welcome

简单介绍,例举了一些生活中运用机器学习的例子(搜索引擎、垃圾邮件过滤器),以及时代背景——有用有钱快学吧

1-1-2 What is Machine Learning?

第一个知识点来啦——

机器学习的定义

一个程序被认为能从经验E中学习,解决任务 T,达到 性能度量值P,当且仅当,有了经验E后,经过P评判, 程序在处理 T 时的性能有所提升。

给一个例子帮助理解:

一个西洋棋菜鸟程序员通过编程,让西洋棋程序自己跟自己下了上万盘棋。通过观察 哪种布局(棋盘位置)会赢,哪种布局会输, 久而久之,这西洋棋程序明白了什么是好的布局, 什么样是坏的布局。然后就牛逼大发了,程序通过学习后, 玩西洋棋的水平超过了程序员。

=============
经验e: 程序上万次的自我练习的经验
任务 t :下棋
性能度量值 p:它在与一些新的对手比赛时,赢得比赛的概率。

学习算法主要的两种类型

目前的学习算法主要分为两种——监督学习无监督学习

1-1-3 Supervised Learning

监督学习的定义

eg1 【回归问题】房价的预测

通过收集的数据(红叉),依据直线(紫线)or平方函数(蓝线),对于一个新房子的房价(绿色)的预测?这其实是个回归问题。在这里插入图片描述
此处引入监督学习概念:

In supervised learning, we are gi

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值