Best Time to Buy and Sell Stock III 解题思路&代码

本文分享了一种解决股票交易问题的算法,通过设计一种最多完成两次交易的策略,实现了击败全国99.99%用户的最高收益。详细介绍了算法思路、代码实现以及背后的思考过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生平第一次leetcode测试拿到击败全国100%的用户,有点小激动就来写篇博客纪念下。

原题:

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

所以意思就是说,第i天的股票价格是prices[i],一共让我们买两次,求最大可以取得的收益。

解题思路:

首先,这两次交易不能重合,就是说必须在第一次买的股票卖掉之后再买第二次。当然第一次卖出和第二次买入可以是同一天。

所以我们的思路就是,站在某一天上,看一下这一天之前可以获得的最大收益,和这一天以后可以获得的最大收益。

先上代码:

    public static int maxProfit(int[] prices) {
        if(prices.length <=0) return 0;
        int len = prices.length;
        int max = Integer.MIN_VALUE;
        
        int[] maxLeft = new int[len];
        int[] maxRight = new int[len];
        maxLeft[0] = 0;
        maxRight[len-1] = 0;
        
        int lowPoint = prices[0];
        
        for(int i=1;i<len;i++)
        {
            if(prices[i]<lowPoint) lowPoint = prices[i];
            maxLeft[i] = Math.max(maxLeft[i-1],prices[i]-lowPoint);
        }
        
        int highPoint = prices[len-1];
        for(int i=len-2;i>=0;i--)
        {
            if(highPoint<prices[i]) highPoint = prices[i];
            maxRight[i] = Math.max(maxRight[i+1], highPoint-prices[i]);
        }
        
        for(int i=0;i<len;i++)
            max = Math.max(max, maxLeft[i]+maxRight[i]);
        return max;
        
    }


建了两个新数组,长度和prices[]一样,分别储存在i位置左边的最大收益和i位置右边的最大收益,最后maxLeft[i]和maxRight[i]加起来最大的值就是买两次的最大收益。这就是主要的思路。

当计算左边的最大收益时,让i依次往右扫,并把途中遇到的最小值存在lowPoint里,然后用当前价格减去lowPoint,如果收益大于maxLeft[i-1],就存入maxLeft[i],否则就往maxLeft[i]中存入maxLeft[i-1]。

当计算右边最大收益时,原理和上面差不多,只不过是从右往左扫,记录最高价格highPoint。

最后来个循环,求得两者和为最大返回即可。

最佳的时间买卖股票III问题可以使用贪心算法来解决。该问题要求在最多进行两次交易的情况下,获取最大的利润。 贪心法的思路是通过在每一天进行买入和卖出操作来获取最大利润。我们可以定义四个变量:buy1、sell1、buy2和sell2,分别表示第一次买入、第一次卖出、第二次买入和第二次卖出的利润。 我们首先将buy1和buy2初始化为正无穷大,sell1和sell2初始化为0。然后遍历股票价格列表,更新这些变量的值。 对于每一天的股票价格,我们可以尝试更新第一次买入的价格和利润。如果当前股票价格比buy1小,我们更新buy1为当前价格。否则,我们计算当前价格与buy1的差值,如果大于sell1,则将sell1更新为该差值。 接下来,我们尝试更新第二次买入的价格和利润。如果当前股票价格减去sell1比buy2小,我们更新buy2为当前价格减去sell1。否则,我们计算当前价格减去sell1的差值,如果大于sell2,则将sell2更新为该差值。 最后,我们返回sell2作为最大利润。 下面是使用贪心算法解决最佳的时间买卖股票III问题的代码示例(假设prices是股票价格的列表): ```python def maxProfit(prices): buy1 = float(&#39;inf&#39;) buy2 = float(&#39;inf&#39;) sell1 = 0 sell2 = 0 for price in prices: buy1 = min(buy1, price) sell1 = max(sell1, price - buy1) buy2 = min(buy2, price - sell1) sell2 = max(sell2, price - buy2) return sell2 ``` 这个算法的时间复杂度是O(n),其中n是股票价格列表的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值