最小公倍数之和 V2 51Nod - 1190(莫比乌斯反演)

给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b)。
例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。
由于结果可能很大,输出Mod 10^9 + 7的结果。(测试数据为随机数据,没有构造特别坑人的Test)
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:每行2个数a, b,中间用空格分隔(1 <= a <= b <= 10^9)
Output
共T行,输出对应的最小公倍数之和Mod 10^9 + 7的结果。
Sample Input
3
1 6
10 15
41 90
Sample Output
66
675
139860
关键: f(n)=d|nμ(d)d 是积性函数
解:

i=ablcm(i,b)=i=abibgcd(i,b)=bda<=i<=bid(gcd(i,b)=d)=bd|bad<=i<=bdi(gcd(i,bd)=1)=bd|bad<=i<=bdid|gcd(i,bd)μ(d)=bd|bd|bdμ(d)ad<=i<=bd,d|ii=bd|bd|bdμ(d)d(add+bdd)(bddadd+1)2=bd|bd|bdμ(d)d(add+bdd)(bddadd+1)2=bd|b(ad+bd)(bdad+1)2d|dμ(d)d

bonus:不过在推导的过程中,出了一些叉子,但是也得出了一下额外结论hh,我假设a是从1开始的,那么设:

sum(n)=i=1nlcm(i,n)

所以:
sum(n)=ni=1nigcd(i,n)

我们从枚举gcd的角度看看,若 gcd(i,n)=g,i=ag,n=bg,gcd(a,b)=1 ,我们实际上要求的就是a的这个值,但是有什么要求呢与b互质,所有说求的就是1到b内与b互质的数的和,定义这个函数为 h(b)
所以:
sum(n)=nd|nh(nd)=nd|nh(d)

现在关键是有没有这个函数h(n)的简单形式,的确有且 h(n)=nϕ(n)2 ,证明比较简单反正法即可,所以:
sum(n)=nd|nh(nd)=nd|ndϕ(d)2,(ϕ)

题目代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<bitset>
#include<vector>
#define N 50000
#define INF 10000000000
#define mod 1000000007
using namespace std;
typedef long long  ll;
int a,b;
bool tag[50000];
vector<int> prime;
void getPrime()
{
    for(int i=2;i<N;i++)
    {
        if(!tag[i])
        {
            prime.push_back(i);
            for(int j=i+i;j<N;j+=i)
                tag[j]=true;
        }
    }
}
int fac[100];
int e[100];
int cnt;
void getFac(int x)
{
    cnt=0;
    for(int i=0;(ll)prime[i]*prime[i]<=x;i++)
    {
        if(x%prime[i]==0)
        {
            fac[cnt]=prime[i];
            e[cnt]=0;
            while(x%prime[i]==0)
            {
                x/=prime[i];
                e[cnt]++;
            }
            cnt++;
        }
    }
    if(x>1)
    {
        fac[cnt]=x;
        e[cnt]=1;
        cnt++;
    }
}
int fac2[100];
int cnt2=0;
int cal(int x)
{
    int now=1;
    for(int i=0;i<cnt2;i++)
        now*=1-fac2[i];
    return now;
}
ll get(int x)
{
    int l=a/x+(a%x?1:0);
    int r=b/x;
    return (ll)(l+r)*(r-l+1)/2%mod;
}

ll res;
void dfs(int cur,int temp)
{
    if(cur==cnt)
    {
        ll now=get(temp)*cal(temp)%mod;
        res=(res+now+mod)%mod;
        return;
    }
    dfs(cur+1,temp);
    int c=temp;
    for(int i=1;i<=e[cur];i++)
    {
        c*=fac[cur];
        fac2[cnt2++]=fac[cur];
        dfs(cur+1,c);
        cnt2--;
    }
}
int main()
{
    int t;
    getPrime();
    scanf("%d",&t);
    while(t--)
    {
        res=0;
        scanf("%d%d",&a,&b);
        getFac(b);

        dfs(0,1);
        res=res*b%mod;
        printf("%lld\n",res);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值