最小花费最大流模板

自己写的最小花费最大流模板

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=10010;//点数
const int maxx=100100;//边数,注意为实际上边数的两倍
const int INF=1<<30;
int to[maxx],nex[maxx],cap[maxx],flow[maxx],cost[maxx];
int head[maxn];
int pre[maxn],dis[maxn];
int eid;
void init()
{
    eid=0;
    memset(head,-1,sizeof(head));
}//初始化
void addEdge(int u,int v,int ca,int co)//注意是u到v的有向边,ca是容量,co是花费
{
    to[eid]=v;
    cap[eid]=ca;
    cost[eid]=co;
    flow[eid]=0;
    nex[eid]=head[u];
    head[u]=eid++;

    to[eid]=u;
    cap[eid]=0;
    cost[eid]=-co;
    flow[eid]=0;
    nex[eid]=head[v];
    head[v]=eid++;
}
bool inQ[maxn];
bool spfa(int s,int e,int n)//s点到e点的是否存在最短路,n为点的数量,点可以从0开始,即0到n
{
    queue<int> que;
    memset(inQ,false,sizeof(inQ));
    for(int i=0;i<=n;i++)
        dis[i]=INF;
    dis[s]=0,inQ[s]=true;
    pre[s]=-1;
    que.push(s);
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        inQ[u]=false;
        for(int i=head[u];~i;i=nex[i])
        {
            int v=to[i];
            if(cap[i]-flow[i]>0&&dis[v]>dis[u]+cost[i])
            {
                dis[v]=dis[u]+cost[i];
                pre[v]=i;//这是为了修改边的容量
                if(!inQ[v])
                    que.push(v),inQ[v]=true;
            }
        }
    }
    return dis[e]!=INF;
}
int minCostMaxFlow(int s,int e,int &minCost,int n)//最小流,s点到e的最小花费最大流,n含义同上
{
    int ans=0;
    while(spfa(s,e,n))
    {
        int mint=INF;
        for(int i=pre[e];~i;i=pre[to[i^1]])
        {
            if(mint>cap[i]-flow[i])
                mint=cap[i]-flow[i];
        }
        ans+=mint;
        for(int i=pre[e];~i;i=pre[to[i^1]])
        {
            flow[i]+=mint;flow[i^1]-=mint;
            minCost+=mint*cost[i];
        }
    }
    return ans;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ACM 算法模板集 Contents 一. 常用函数与STL 二. 重要公式与定理 1. Fibonacci Number 2. Lucas Number 3. Catalan Number 4. Stirling Number(Second Kind) 5. Bell Number 6. Stirling's Approximation 7. Sum of Reciprocal Approximation 8. Young Tableau 9. 整数划分 10. 错排公式 11. 三角形内切圆半径公式 12. 三角形外接圆半径公式 13. 圆內接四边形面积公式 14. 基础数论公式 三. 大数模板,字符读入 四. 数论算法 1. Greatest Common Divisor最大公约数 2. Prime素数判断 3. Sieve Prime素数筛法 4. Module Inverse模逆元 5. Extended Euclid扩展欧几里德算法 6. Modular Linear Equation模线性方程(同余方程) 7. Chinese Remainder Theorem中国余数定理(互素于非互素) 8. Euler Function欧拉函数 9. Farey总数 9. Farey序列构造 10. Miller_Rabbin素数测试,Pollard_rho因式分解 五. 图论算法 1. 最小生成树(Kruscal算法) 2. 最小生成树(Prim算法) 3. 单源最短路径(Bellman-ford算法) 4. 单源最短路径(Dijkstra算法) 5. 全源最短路径(Folyd算法) 6. 拓扑排序 7. 网络预流和最大流 8. 网络最小费用最大流 9. 网络最大流(高度标号预流推进) 10. 最大团 11. 二分图最大匹配(匈牙利算法) 12. 带权二分图最优匹配(KM算法) 13. 强连通分量(Kosaraju算法) 14. 强连通分量(Gabow算法) 15. 无向图割边割点和双连通分量 16. 最小树形图O(N^3) 17. 最小树形图O(VE) 六. 几何算法 1. 几何模板 2. 球面上两点最短距离 3. 三点求圆心坐标 4. 三角形几个重要的点 七. 专题讨论 1. 树状数组 2. 字典树 3. 后缀树 4. 线段树 5. 并查集 6. 二叉堆 7. 逆序数(归并排序) 8. 树状DP 9. 欧拉路 10. 八数码 11. 高斯消元法 12. 字符串匹配(KMP算法) 13. 全排列,全组合 14. 二维线段树 15. 稳定婚姻匹配 16. 后缀数组 17. 左偏树 18. 标准RMQ-ST 19. 度限制最小生成树 20. 最优比率生成树(0/1分数规划) 21. 最小花费置换 22. 区间K大数 23. LCA - RMQ-ST 24. LCA – Tarjan 25. 指数型母函数 26. 指数型母函数(大数据) 27. 单词前缀树(字典树+KMP) 28. FFT(大数乘法) 29. 二分图网络最大流最小割 30. 混合图欧拉回路 31. 无源汇上下界网络流 32. 二分图最小点权覆盖 33. 带约束的轨道计数(Burnside引理) 34. 三分法求函数波峰 35. 单词计数,矩阵乘法 36. 字符串和数值hash 37. 滚动队列,前向星表示法 38. 最小点基,最小权点基

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值