问题就是如何把最大权闭合子图问题转化成最大流实现,中间需要经过一个最小割的概念,证明涉及到简单割,简单割对应一个闭合子图
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn=405;
const int maxx=40805;
int edge;
int to[maxx],flow[maxx],nex[maxx];
int head[maxn];
void addEdge(int v,int u,int cap)
{
to[edge]=u,flow[edge]=cap,nex[edge]=head[v],head[v]=edge++;
to[edge]=v,flow[edge]=0,nex[edge]=head[u],head[u]=edge++;
}
int vis[maxn];
int pre[maxn];
bool bfs(int s,int e)
{
queue<int> que;
pre[s]=-1;
memset(vis,-1,sizeof(vis));
que.push(s);
vis[s]=0;
while(!que.empty())
{
int u=que.front();
que.pop();
for(int i=head[u];~i;i=nex[i])
{
int v=to[i];
if(vis[v]==-1&&flow[i])
{
vis[v]=vis[u]+1;
if(v==e)
return true;
que.push(v);
}
}
}
return false;
}
int dfs(int s,int t,int f)
{
if(s==t||!f)
return f;
int r=0;
for(int i=head[s];~i;i=nex[i])
{
int v=to[i];
if(vis[v]==vis[s]+1&&flow[i])
{
int d=dfs(v,t,min(f,flow[i]));
if(d>0)
{
flow[i]-=d;
flow[i^1]+=d;
r+=d;
f-=d;
if(!f)
break;
}
}
}
if(!r)
vis[s]=INF;
return r;
}
int maxFlow(int s ,int e)//然后直接调用这个即可
{
int ans=0;
while(bfs(s,e))
ans+=dfs(s,e,INF);
return ans;
}
void init()//记得每次使用前初始化
{
memset(head,-1,sizeof(head));
edge=0;
}
int main()
{
int n,m;
int x,y,z;
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;i++)
scanf("%d",&x),addEdge(n+i,n+m+1,x);
int total=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
total+=x;
addEdge(0,i,x);
while(y--)
{
scanf("%d",&z);
addEdge(i,n+z,INF);
}
}
printf("%d\n",total-maxFlow(0,n+m+1));
return 0;
}