2018百度之星初赛1003度度熊剪纸条

度度熊剪纸条

 

 Accepts: 488

 

 Submissions: 5471

 Time Limit: 2000/1000 MS (Java/Others)

 

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description

度度熊有一张纸条和一把剪刀。

纸条上依次写着 NN 个数字,数字只可能是 00 或者 11。

度度熊想在纸条上剪 KK 刀(每一刀只能剪在数字和数字之间),这样就形成了 K+1K+1 段。

他再把这 K+1K+1 段按一定的顺序重新拼起来。

不同的剪和接的方案,可能会得到不同的结果。

度度熊好奇的是,前缀 11 的数量最多能是多少。

Input

有多组数据,读到EOF结束。

对于每一组数据,第一行读入两个数 NN 和 KK 。

第二行有一个长度为 NN 的字符串,依次表示初始时纸条上的 NN 个数。

0 \leq K < N \leq 100000≤K<N≤10000

所有数据 NN 的总和不超过100000100000

Output

对于每一组数据,输出一个数,表示可能的最大前缀 11 的数量。

Sample Input

5 1
11010
5 2
11010

Sample Output

Copy

2
3

题解:用那个背包算法k为背包容量,我们对每个1 0字符串进行处理,那么可以发现对于每个连续的1的字符串要么进行两次剪裁,要么一次,次数就是他们的消耗值,连续的1的个数就是他的价值即可(这样说来貌似贪心也可以。。。。)

#include <stdio.h>
#include<algorithm>
#include<string.h>
#include<deque>
#include<iostream>
using namespace std;
struct node{
    int take;
    int val;
}have[10010];
int main(int argc, char *argv[])
{
    int n,k;
    while(scanf("%d %d",&n,&k)!=EOF)
    {
        char a[10011]={0};
        int i,j;
        memset(have,0,sizeof(have));
        scanf("%s",a);
        int fro=0;//前导零 
        int bac=0;//后导零 
        int val=0;
        int cnt=0;
        for(i=0;i<n;i++)
        {
            if(a[i]=='0')
            {
                fro=1;
            }
            if(a[i]=='1')
            {
                for(j=i;j<n;j++)
                {
                    if(a[j]=='0')
                    {
                        have[cnt].take=fro+1;
                        have[cnt].val=val;
                        cnt++;
                        i=j-1; 
                        fro=0;
                        val=0;
                        break;
                    }
                    else
                    {
                    //    printf("%d-->",j);
                        val++;
                    }
                }
            //    printf("\n");
                if(j==n&&a[j-1]=='1')
                {
                        have[cnt].take=fro;
                        have[cnt].val=val;
                        cnt++;
                        i=j-1; 
                        fro=0;
                        val=0;
                        break;
                }
            }
        }
        if(k==0)
        {
            int ans=0;
            for(i=0;i<n;i++)
            {
                if(a[i]=='1')
                ans++;
                else
                break;
            }    
            printf("%d\n",ans);
        }
        else
        {
            k++;
            int dp[10001]={0};
            for(i=0;i<cnt;i++)
            {
                for(j=k;j>=have[i].take;j--)
                {
                    dp[j]=max(dp[j],dp[j-have[i].take]+have[i].val);
                }
            }
            printf("%d\n",dp[k]);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值