度度熊剪纸条
Accepts: 488
Submissions: 5471
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
Problem Description
度度熊有一张纸条和一把剪刀。
纸条上依次写着 NN 个数字,数字只可能是 00 或者 11。
度度熊想在纸条上剪 KK 刀(每一刀只能剪在数字和数字之间),这样就形成了 K+1K+1 段。
他再把这 K+1K+1 段按一定的顺序重新拼起来。
不同的剪和接的方案,可能会得到不同的结果。
度度熊好奇的是,前缀 11 的数量最多能是多少。
Input
有多组数据,读到EOF结束。
对于每一组数据,第一行读入两个数 NN 和 KK 。
第二行有一个长度为 NN 的字符串,依次表示初始时纸条上的 NN 个数。
0 \leq K < N \leq 100000≤K<N≤10000
所有数据 NN 的总和不超过100000100000
Output
对于每一组数据,输出一个数,表示可能的最大前缀 11 的数量。
Sample Input
5 1 11010 5 2 11010
Sample Output
Copy
2 3
题解:用那个背包算法k为背包容量,我们对每个1 0字符串进行处理,那么可以发现对于每个连续的1的字符串要么进行两次剪裁,要么一次,次数就是他们的消耗值,连续的1的个数就是他的价值即可(这样说来貌似贪心也可以。。。。)
#include <stdio.h>
#include<algorithm>
#include<string.h>
#include<deque>
#include<iostream>
using namespace std;
struct node{
int take;
int val;
}have[10010];
int main(int argc, char *argv[])
{
int n,k;
while(scanf("%d %d",&n,&k)!=EOF)
{
char a[10011]={0};
int i,j;
memset(have,0,sizeof(have));
scanf("%s",a);
int fro=0;//前导零
int bac=0;//后导零
int val=0;
int cnt=0;
for(i=0;i<n;i++)
{
if(a[i]=='0')
{
fro=1;
}
if(a[i]=='1')
{
for(j=i;j<n;j++)
{
if(a[j]=='0')
{
have[cnt].take=fro+1;
have[cnt].val=val;
cnt++;
i=j-1;
fro=0;
val=0;
break;
}
else
{
// printf("%d-->",j);
val++;
}
}
// printf("\n");
if(j==n&&a[j-1]=='1')
{
have[cnt].take=fro;
have[cnt].val=val;
cnt++;
i=j-1;
fro=0;
val=0;
break;
}
}
}
if(k==0)
{
int ans=0;
for(i=0;i<n;i++)
{
if(a[i]=='1')
ans++;
else
break;
}
printf("%d\n",ans);
}
else
{
k++;
int dp[10001]={0};
for(i=0;i<cnt;i++)
{
for(j=k;j>=have[i].take;j--)
{
dp[j]=max(dp[j],dp[j-have[i].take]+have[i].val);
}
}
printf("%d\n",dp[k]);
}
}
return 0;
}