4249. 【五校联考7day1】游戏


(File IO): input:game.in output:game.out

Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits  

Description

WYF从小就爱乱顶,但是顶是会造成位移的。他之前水平有限,每次只能顶出k的位移,也就是从一个整点顶到另一个整点上。我们现在将之简化到数轴上,即从 一个整点可以顶到与自己相隔在k之内的数轴上的整点上。现在WYF的头变多了,于是他能顶到更远的地方,他能顶到任意整点上。现在他在玩一个游戏,这个游 戏里他只能向正方向顶,同时如果他从i顶到j,他将得到a[j] * (j - i)的分数,其中a[j]是j点上的分数,且要求j > i, 他最后必须停在n上。
现给出1~n上的所有分数,原点没有分数。他现在在原点,没有分。WYF想知道他最多能得多少分。

Input

第一行一个整数n。
第二行有n个整数,其中第i个数表示a[j]。

Output

一个整数,表示WYF最多能得到的分数。

Sample Input

3
1 1 50

Sample Output

150

Data Constraint

对于60%的数据,n<=1000;
对于100%的数据,n<=100000,0<=a[j]<=50。

Source / Author: 北师大实验 game

 

题解:

贪。

具体:

若b是a+1~b这个区间中最大的,我们一定选择从a直接跳到b。

证明:

若直接跳到b不是最优的,那么一定存在一点i , 使得(i-a)*num[i] + (b-i)*num[b] > (b-a)num[b]

将不等式左边拆开得

i*num[i]-a*num[i] + b*num[b]-i*num[b]

= (b-a)*num[b]+i*(num[i] - num[b])

第一项和不等式右边一样,考虑第二项,发现num[i] -num[b]是非正数,因此(i-a)*num[i] + (b-i)*num[b] <= (b-a)num[b]

与题设矛盾。

所以说,假设我们现在在点p,那我们现在的任务就是去到下一个高峰上,就像这样:

具体地:

我们需要倒着做一遍求点i到n的最高峰,和其对应的点的编号。

然后p=0,(从起点往后走),每一次走到p+1~n的最高峰。

 

#include<bits/stdc++.h>
#define N 100010
#define inf 2147483647
#define rint register int
#define ll long long
#define lb long double
#define point(a) multiset<a>::iterator 
#define mod (ll)(998244353)
#define mem(a,b) memset(a,b,sizeof (a))
#define mcy(a,b) memcpy((a) , (b) ,sizeof (a));
#define open(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;

struct node
{
	int id,v;
}ma[N];

int n,i,j,k,t,a[N],ans;

void work()
{
	for(i=n;i>0;i--) if(a[i] > ma[i+1].v) ma[i] = (node){i,a[i]} ; else ma[i] = ma[i+1];
	int p=0;
	while(p<n)
	{
		int t=p;
		p = ma[p+1].id ;
		ans+=a[p] * (p-t);
	}
}

int  main()
{
	open("game");
	scanf("%d",&n);
	for(i=1;i<=n;i++)scanf("%d",&a[i]);
	work();
	printf("%d",ans);
	return 0;
}

简单又自然,时间复杂度O(n)

 

算法二:dp

dp方程显然,O(n^2)做法显然。

考虑O(n log n )算法

若决策点j 优于 k 则有

f[j] + a[i]*(i-j) > f[k]+a[i]*(i-k)

f[j]-f[k] > a[i]*(i-k) - a[i]*(i-j)

            > a[i]*i - a[i]*k  - a[i]*i +a[i]*j

           > a[i] * (j-k)

因此我们有 \frac{f[j]-f[k]}{j-k} > a[i] (j<k)

这不是斜率吗?

设j为横坐标,f[j]为纵坐标。

那我们就会得到这样一幅图:

 

坐标系中的就是决策点。

将这些点之间连上线段

会发现3号店比4号优,看斜率比较。

就把4号点去除。

这样我们就维护了一个凸包。

 

 

 

 

 

 

 

 

 

 

 

 

 

技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值