(File IO): input:game.in output:game.out
Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits
Description
WYF从小就爱乱顶,但是顶是会造成位移的。他之前水平有限,每次只能顶出k的位移,也就是从一个整点顶到另一个整点上。我们现在将之简化到数轴上,即从 一个整点可以顶到与自己相隔在k之内的数轴上的整点上。现在WYF的头变多了,于是他能顶到更远的地方,他能顶到任意整点上。现在他在玩一个游戏,这个游 戏里他只能向正方向顶,同时如果他从i顶到j,他将得到a[j] * (j - i)的分数,其中a[j]是j点上的分数,且要求j > i, 他最后必须停在n上。
现给出1~n上的所有分数,原点没有分数。他现在在原点,没有分。WYF想知道他最多能得多少分。
Input
第一行一个整数n。
第二行有n个整数,其中第i个数表示a[j]。
Output
一个整数,表示WYF最多能得到的分数。
Sample Input
3
1 1 50
Sample Output
150
Data Constraint
对于60%的数据,n<=1000;
对于100%的数据,n<=100000,0<=a[j]<=50。
Source / Author: 北师大实验 game
题解:
贪。
具体:
若b是a+1~b这个区间中最大的,我们一定选择从a直接跳到b。
证明:
若直接跳到b不是最优的,那么一定存在一点i , 使得
将不等式左边拆开得
第一项和不等式右边一样,考虑第二项,发现num[i] -num[b]是非正数,因此
与题设矛盾。
所以说,假设我们现在在点p,那我们现在的任务就是去到下一个高峰上,就像这样:
具体地:
我们需要倒着做一遍求点i到n的最高峰,和其对应的点的编号。
然后p=0,(从起点往后走),每一次走到p+1~n的最高峰。
#include<bits/stdc++.h>
#define N 100010
#define inf 2147483647
#define rint register int
#define ll long long
#define lb long double
#define point(a) multiset<a>::iterator
#define mod (ll)(998244353)
#define mem(a,b) memset(a,b,sizeof (a))
#define mcy(a,b) memcpy((a) , (b) ,sizeof (a));
#define open(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
struct node
{
int id,v;
}ma[N];
int n,i,j,k,t,a[N],ans;
void work()
{
for(i=n;i>0;i--) if(a[i] > ma[i+1].v) ma[i] = (node){i,a[i]} ; else ma[i] = ma[i+1];
int p=0;
while(p<n)
{
int t=p;
p = ma[p+1].id ;
ans+=a[p] * (p-t);
}
}
int main()
{
open("game");
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
work();
printf("%d",ans);
return 0;
}
简单又自然,时间复杂度O(n)
算法二:dp
dp方程显然,O(n^2)做法显然。
考虑O(n log n )算法
若决策点j 优于 k 则有
f[j] + a[i]*(i-j) > f[k]+a[i]*(i-k)
f[j]-f[k] > a[i]*(i-k) - a[i]*(i-j)
> a[i]*i - a[i]*k - a[i]*i +a[i]*j
> a[i] * (j-k)
因此我们有 (j<k)
这不是斜率吗?
设j为横坐标,f[j]为纵坐标。
那我们就会得到这样一幅图:
坐标系中的就是决策点。
将这些点之间连上线段
会发现3号店比4号优,看斜率比较。
就把4号点去除。
这样我们就维护了一个凸包。