【数据科学赛】商品识别挑战赛 #相似图像检索 #¥15,000

CompHub 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注!

更多比赛信息见 CompHub主页


以下内容摘自比赛主页(点击文末阅读原文进入)

Part1赛题介绍

题目

Visual Product Recognition Challenge 2023

举办平台

AiCrowd

主办方

背景

Enabling quick and precise searches among millions of items on marketplaces is a key feature for e-commerce. The use of common text-based search engines often requires several iterations and can render unsuccessful unless exact product names are known. Image-based search provides a powerful alternative and can be particularly handy when a customer observes the desired product in real life, in movies or online media.

能够在市场上数百万种商品中快速准确地搜索是电子商务的一个关键功能。使用常见的基于文本的搜索引擎通常需要多次迭代,除非知道确切的产品名称,否则可能会失败。基于图像的搜索提供了一种强大的选择,当客户在现实生活、电影或在线媒体中观察所需产品时,这种搜索尤其方便。

Recent progress in computer vision now provides rich and precise descriptors for visual content. The goal of this challenge is to benchmark and advance existing computer vision methods for the task of image-based product search. Our evaluation targets a real-case scenario where we use over 40k images for 9k products from real marketplaces. Example products include sandals and sunglasses, and their successful matching requires overcoming visual variations in images due changing viewpoints, background clutter, varying image quality and resolution.

计算机视觉的最新进展为视觉内容提供了丰富而精确的描述符。这项挑战的目标是对现有的基于图像的产品搜索任务的计算机视觉方法进行基准测试和改进。我们的评估目标是一个真实的场景,我们使用来自真实市场的9k种产品的40k多张图片。例如凉鞋和太阳镜,它们的成功搭配需要克服由于视点变化、背景杂乱、图像质量和分辨率变化造成的图像视觉变化。

The challenge is organized in conjunction with Machines Can See Summit (MCS) that will be held in Dubai in the beginning of April 2023. The winners of the challenge will be invited to present their solutions at MCS 2023.

这项挑战是与将于2023年4月初在迪拜举行的“机器看得见”峰会(MCS)一起组织的。挑战的获胜者将被邀请在MCS 2023上展示他们的解决方案。

We hope this challenge will help advancing novel algorithms for image retrieval and practical applications of computer vision to e-commerce.

我们希望这项挑战将有助于推进图像检索的新算法,以及计算机视觉在电子商务中的实际应用。

Part2时间安排

Here's the timeline of the challenge:

Challenge start: January 16, 2023 Deadline for publication of training datasets by participants: March 9, 2023 Challenge end: March 16, 2023 Presentation of winning solutions at MCS: Beginning of April 2023

Part3奖励机制

This challenge has Leaderboard Prize Pool of USD 15,000.

Leaderboard Prizes The leaderboard's top three teams or participants will receive the following prizes.

🥇 1st on the leaderboard: USD 8000 🥈 2nd on the leaderboard: USD 5000 🥉 3rd on the leaderboard: USD 2000 The winners of the challenge will be invited to present their solutions at the Machines Can See summit in Dubai and will be awarded a travel grant.

Part4赛题描述

In this challenge we separate product images into user and seller photos. User photos are typically snapshots of products taken with a phone camera in cluttered scenes. Such images differ substantially from seller photos that are intended to represent products on marketplaces. We provide object bounding boxes to indicate desired products on user photos and use such images and boxes as search queries. Given a search query, the goal of the algorithm is to find correct product matches in the gallery of seller photos.

在这个挑战中,我们将产品图片分为用户照片和卖家照片。用户照片通常是在混乱的场景下用手机相机拍摄的产品快照。这些图片与卖家意在在市场上代表产品的照片有很大不同。我们提供对象包围框,在用户照片上显示想要的产品,并使用这些图像和框作为搜索查询。给定一个搜索查询,该算法的目标是在卖家照片库中找到正确的产品匹配。

Your submission should return a numpy array of size N x 1000, where each row r corresponds to the top-1000 list of gallery images sorted by the similarity with respect to the query image r, r = 1…N.

您的提交应该返回大小为N x 1000的numpy数组,其中每行r对应于按查询图像r的相似度排序的前1000个图库图像列表,r = 1…N。


### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值