目录
🧠 前言:为什么从零实现机器学习模型?
在AI浪潮中,我们常常被各种现成的机器学习库(如sklearn、TensorFlow)所吸引。但正如叶芝所说:"学习不是装满一桶水,而是点燃一把火",自己动手实现模型能让你:
-
真正理解算法本质:避免成为"调包侠"
-
掌握数学原理:矩阵运算、求导优化不再神秘
-
调试能力提升:遇到问题时能快速定位
-
定制化开发:根据需求灵活修改模型结构
今天我们就从多元线性回归这个基础模型开始,手把手教你用Python从零搭建完整模型!文末还准备了与sklearn的对比实验,验证我们的实现效果。
一、多元线性回归核心原理
1.1 模型公式
多元线性回归描述多个自变量(特征)与因变量(目标)的线性关系:
1.2 矩阵表示
1.3 核心假设
假设条件 | 说明 | 验证方法 |
---|---|---|
线性关系 | 特征与目标呈线性关系 | 散点图、残差图 |
无多重共线性 | 特征间相关性低 | 方差膨胀因子(VIF) |
同方差性 | 误差项方差恒定 | 残差图 |
正态分布误差 | 误差项服从正态分布 | Q-Q图 |
二、手撕代码实现
2.1 类结构设计
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class MultipleLinearRegression:
def __init__(self):
self.coefficients = None # 模型系数
self.X_train = None # 训练特征
self.y_train = None # 训练目标
self.X_test = None