人工智能与机器学习:Python从零实现多元线性回归模型

目录

🧠 前言:为什么从零实现机器学习模型?

一、多元线性回归核心原理

1.1 模型公式

1.2 矩阵表示

1.3 核心假设

二、手撕代码实现

2.1 类结构设计

         2.2 关键方法实现

方法1:数据划分

方法2:模型训练(核心)

方法3:预测

方法4:模型评估

三、实战演示:加州房价预测

3.1 数据准备

3.2 模型训练

3.3 与sklearn对比

3.4 结果对比

四、关键数学推导详解

4.1 正规方程推导

五、优化方向

🌟 结语


🧠 前言:为什么从零实现机器学习模型?

在AI浪潮中,我们常常被各种现成的机器学习库(如sklearn、TensorFlow)所吸引。但正如叶芝所说:"学习不是装满一桶水,而是点燃一把火",自己动手实现模型能让你:

  1. 真正理解算法本质:避免成为"调包侠"

  2. 掌握数学原理:矩阵运算、求导优化不再神秘

  3. 调试能力提升:遇到问题时能快速定位

  4. 定制化开发:根据需求灵活修改模型结构

今天我们就从多元线性回归这个基础模型开始,手把手教你用Python从零搭建完整模型!文末还准备了与sklearn的对比实验,验证我们的实现效果。


一、多元线性回归核心原理

1.1 模型公式

多元线性回归描述多个自变量(特征)与因变量(目标)的线性关系:

1.2 矩阵表示

1.3 核心假设

假设条件 说明 验证方法
线性关系 特征与目标呈线性关系 散点图、残差图
无多重共线性 特征间相关性低 方差膨胀因子(VIF)
同方差性 误差项方差恒定 残差图
正态分布误差 误差项服从正态分布 Q-Q图

二、手撕代码实现

2.1 类结构设计

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

class MultipleLinearRegression:
    def __init__(self):
        self.coefficients = None  # 模型系数
        self.X_train = None       # 训练特征
        self.y_train = None       # 训练目标
        self.X_test = None        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值