目录
本文将通过20+实战案例、5种AI增强方案和3套优化方法论,全面解析MySQL复合查询技术,助你掌握从基础到企业级优化的完整知识体系。全文包含7000+字深度解析,结合最新AI技术实现查询性能跃升。
一、基础查询强化训练
1.1 核心查询模式解析
案例1:条件筛选与通配符优化
-- 查询工资>500或职位为MANAGER且姓名以J开头的员工
SELECT *
FROM EMP
WHERE (sal>500 OR job='MANAGER')
AND ename LIKE 'J%';
优化技巧:
-
LIKE 'J%'
比LIKE 'J_'
效率更高(避免固定长度匹配限制) -
使用覆盖索引(ename,job,sal)可减少回表操作
案例2:多维度排序与空值处理
-- 按部门升序、工资降序排列,处理奖金空值
SELECT ename, sal, comm, (sal*12 + IFNULL(comm,0)) AS annual_income
FROM EMP
ORDER BY deptno ASC, sal DESC;
关键点:
-
IFNULL()
函数避免NULL污染计算结果 -
复合索引
(deptno,sal)
可加速排序过程
二、多表关联进阶技巧
2.1 表关联类型选择指南
2.2 多表关联优化方案
实战案例:部门-员工-工资等级三表联查
SELECT d.dname, e.ename, s.grade
FROM dept d
JOIN emp e ON d.deptno = e.deptno
JOIN salgrade s ON e.sal BETWEEN s.losal AND s.hisal;
优化策略:
-
索引优化:为
e.deptno
和e.sal
建立联合索引 -
查询分解:将复杂查询拆分为
WITH
临时表 -
AI推荐:使用AI工具分析执行计划,推荐最佳索引组合
三、子查询与智能优化
3.1 子查询性能跃升方案
传统方式 vs AI增强方式
-- 传统方式:查找部门平均工资以上员