支持向量机(笔记) 软间隔和正则化在支持向量机中都是用来处理复杂问题和提高模型泛化能力的重要技术。软间隔通过允许一定程度的分类错误或间隔内部点来提高模型的鲁棒性。正则化通过控制模型的复杂度,防止模型在训练数据上的过度拟合,从而提升模型在未见数据上的性能。
贝叶斯分类器(笔记) 贝叶斯决策论是一种决策理论,基于贝叶斯统计理论,旨在在面对不确定性的情况下做出最优决策。这种决策理论的核心是考虑决策者对不确定性事件的主观信念,并结合利益或效用来选择最佳行动。:在进行任何观察或数据收集之前,决策者对不同可能事件发生的概率的主观估计。:描述观察数据在各种可能的事件下出现的可能性的函数。它反映了观察数据与不同假设或事件之间的关系。:考虑到观察到的数据后,更新的对事件发生概率的估计。这是先验概率和似然函数的乘积,用贝叶斯定理计算得出。:基于后验概率和决策者的效用函数,选择对决策者最有利的行动。
聚类任务(笔记) 它的基本思想是通过迭代的方式,将样本分配到K个簇中,使得每个样本点到其所属簇的中心点(质心)的距离最小化。与传统的基于距离的方法(如K均值)不同,密度聚类不需要预先指定簇的数量,而是根据数据点的密度分布自动发现簇的形状和数量。凝聚层次聚类是最常见的层次聚类方法之一,它的基本思想是从每个样本点作为一个独立的簇开始,逐步将最相似的簇合并,直到所有样本点最终合并为一个簇。分裂层次聚类与凝聚层次聚类相反,它从一个包含所有样本的簇开始,逐步将其分割成更小的子簇,直到每个样本点作为一个独立的簇。