小波包MATLAB实现

本文介绍了小波包分析相较于小波分析的优势,特别是在非平稳信号处理中的精细分析能力。通过小波包分解和信号重构,可以更好地分析信号的高频部分。文中还提供了小波包树的实例解释,展示了如何在MATLAB中进行小波包分解,并强调了小波包能量特征提取的重要性。
摘要由CSDN通过智能技术生成

小波包是什么

  1. 小波与小波包区别(选小波包更佳)
    小波分析和小波包分析适合对非平稳信号分析,相比较小波分析,利用小波包分析可以对信号分析更加精细,小波包分析可以将时频平面划分的更为细致,对信号的高频部分的分辨率要好于小波分析,可以根据信号的特征,自适应的选择最佳小波基函数,比便更好的对信号进行分析,故小波包分析应用更加广泛。
    ①小波分解
    小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号,不能很好地分解和表示包含大量细节信息(细小边缘或纹理)的信号,如非平稳机械振动信号、遥感图象、地震信号和生物医学信号等。
    ②小波包分解
    小波包变换既可以对低频部分信号进行分解,也可以对高频部分进行分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中、高频信息的信号能够进行更好的时频局部化分析。

小波包分解与信号重构

  • 实例讲解——小波包树与时频图
clear all  
clc
fs=1024;  %采样频率
load s;  %加载要处理的信号
[tt]=wpdec(s,3,'dmey');  %小波包分解,3代表分解3层,'dmey'使用meyr小波
plot(tt)               %画小波包树图
wpviewcf(tt,1);        %画出时间频率图

在这里插入图片描述
在这里插入图片描述
图像解释:
x轴:采样点的个数
y轴,显示的数字对应于小波包树中的节点,这个顺序是小波包自动排列的。
采样频率是1024Hz,根据采样定理,奈奎斯特采样频率是512Hz;
分解了3层,最后一层就是 2^3=8个频率段,每个频率段的频率区间是 512/8=64Hz;
(引用:http://www.cnblogs.com/welen/articles/5667217.html )

  • 小波包树解读:
    节点的命名规则是从(1,0)开始,叫1号, (1,1)是2号………依此类推,(3,0)是7号,(3,7)是14号。 每个节点都有对应的小波包系数,这个系数决定了频率的大小,也就是说频率信息已经有了,时域信息就是 order,order就是这些节点的顺序,也就是频率的顺序。

  • 小波包分解与重构

x_input=x_train(:,1,1);                  %输入数据
plot(x_input);title('输入信号时域图像')   %绘制输入信号时域图像
%%   查看频谱范围
x=x_input;       
fs=128;
N=length(x); %采样点个数
signalFFT=abs(fft(x,N));%真实的幅值
Y=2*signalFFT/N;
f=(0:N/2)*(fs/N);
figure;plot(f,Y(1:N/2+1));
ylabel('amp'); xlabel('frequency');title('输入信号的频谱');grid on
%3层小波包分解
wpt=wpdec(x_input,3,'dmey');        %进行3层小波包分解
plot(wpt);                          %绘制小波包树%%
%看第38个节点的频谱分布
最初的重构方法(频率排布顺序混乱)
for i=0:7
rex3(:,i+1)=wprcoef(wpt,[3 i]);  %实现对节点小波节点进行重构        
end
figure;
Matlab提供了方便的小波处理工具箱,可以帮助用户进行小波包分解。小波包分解是小波变换的一种变形方法,在信号处理和数据分析中被广泛应用。通过使用Matlab的小波分析工具箱,可以对信号进行小波包分解和重构。具体的小波包分解的Matlab程序如下: 1. 首先,导入所需的信号处理工具箱: ```matlab % 导入信号处理工具箱 import signal.* % 导入小波分析工具箱 import wavelet.* ``` 2. 定义需要进行小波包分解的信号: ```matlab % 定义信号 signal = [1, 2, 3, 4, 5, 6, 7, 8]; ``` 3. 设置小波包分解的参数: ```matlab % 设置小波包分解的参数 waveletName = 'db4'; % 小波基函数 level = 3; % 分解的层数 ``` 4. 进行小波包分解: ```matlab % 执行小波包分解 [c, l = wavedec(signal, level, waveletName); ``` 5. 获取小波包分解的系数和分解树: ```matlab % 获取小波包分解的系数和分解树 coeffs = detcoef(c, l, level); tree = wpdec(signal, level, waveletName); ``` 6. 可选地,对小波包分解的结果进行分析和处理: ```matlab % 对小波包分解的结果进行进一步分析和处理 % ... % 例如,获取小波包分解的能量特征提取 energy = sum(abs(coeffs).^2, 2); ``` 通过以上的步骤,可以使用Matlab进行小波包分解的处理。这个程序可以帮助用户对信号进行小波包分解,并进一步分析和处理分解结果以获取所需的信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [小波包分解matlab程序](https://blog.csdn.net/weixin_44463965/article/details/130315147)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)](https://blog.csdn.net/qq_39989653/article/details/103416691)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值