小波包是什么
- 小波与小波包区别(选小波包更佳)
小波分析和小波包分析适合对非平稳信号分析,相比较小波分析,利用小波包分析可以对信号分析更加精细,小波包分析可以将时频平面划分的更为细致,对信号的高频部分的分辨率要好于小波分析,可以根据信号的特征,自适应的选择最佳小波基函数,比便更好的对信号进行分析,故小波包分析应用更加广泛。
①小波分解
小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号,不能很好地分解和表示包含大量细节信息(细小边缘或纹理)的信号,如非平稳机械振动信号、遥感图象、地震信号和生物医学信号等。
②小波包分解
小波包变换既可以对低频部分信号进行分解,也可以对高频部分进行分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中、高频信息的信号能够进行更好的时频局部化分析。
小波包分解与信号重构
- 实例讲解——小波包树与时频图
clear all
clc
fs=1024; %采样频率
load s; %加载要处理的信号
[tt]=wpdec(s,3,'dmey'); %小波包分解,3代表分解3层,'dmey'使用meyr小波
plot(tt) %画小波包树图
wpviewcf(tt,1); %画出时间频率图
图像解释:
x轴:采样点的个数
y轴,显示的数字对应于小波包树中的节点,这个顺序是小波包自动排列的。
采样频率是1024Hz,根据采样定理,奈奎斯特采样频率是512Hz;
分解了3层,最后一层就是 2^3=8个频率段,每个频率段的频率区间是 512/8=64Hz;
(引用:http://www.cnblogs.com/welen/articles/5667217.html )
-
小波包树解读:
节点的命名规则是从(1,0)开始,叫1号, (1,1)是2号………依此类推,(3,0)是7号,(3,7)是14号。 每个节点都有对应的小波包系数,这个系数决定了频率的大小,也就是说频率信息已经有了,时域信息就是 order,order就是这些节点的顺序,也就是频率的顺序。 -
小波包分解与重构
x_input=x_train(:,1,1); %输入数据
plot(x_input);title('输入信号时域图像') %绘制输入信号时域图像
%% 查看频谱范围
x=x_input;
fs=128;
N=length(x); %采样点个数
signalFFT=abs(fft(x,N));%真实的幅值
Y=2*signalFFT/N;
f=(0:N/2)*(fs/N);
figure;plot(f,Y(1:N/2+1));
ylabel('amp'); xlabel('frequency');title('输入信号的频谱');grid on
%3层小波包分解
wpt=wpdec(x_input,3,'dmey'); %进行3层小波包分解
plot(wpt); %绘制小波包树%%
%看第3层8个节点的频谱分布
最初的重构方法(频率排布顺序混乱)
for i=0:7
rex3(:,i+1)=wprcoef(wpt,[3 i]); %实现对节点小波节点进行重构
end
figure;