智能考试deeps

#人工智能系统设计

class MyNet(nn.Module):

    def __init__(self):

        super(MyNet, self) .__init__()

        self fc1 = nn.Linear(14, 128)

        self bn1 = nn.BaBatchNorm1d(128)

        self relu = nn.ReLU()

        #第二层

        self fc2 = nn.Linear(128, 256)

        self bn2 = nn.BaBatchNorm1d(256)

        self relu = nn.ReLU()

        #第三层

        self fc3= nn.Linear(256, 2)

       

    def forward(self, x):

        x = self.fc1(x)

        x = self.bn1(x)

        x = self.relu(x)

        x = self.fc2(x)

        x = self.bn2(x)

        x = self.relu(x)

        out = self.fc3(x)

        return out

   


流程图:读取XX数据  检查数据是否正确 数据清洗 数据分析出来 模型加载 根据模型进行推理 输出相应结果 结束

#神经网络练习

from torchvision import datasets

#划分数据集

folder = datasets.ImageFolder(root='c:/水果种类智能训练/水果图片', transfrom =trans_compose)

n = len(folder)

n1 = int(n*0.8)

n2 = n-n1

#基于torch工具包的random_split函数进行数据集的划分,分别赋值为traintest

train, test = random_split(folder, [n1,n2])

device = torch.device("cpu")

batchX = batchX.to(device)

batchY = batchY.to(device)

model = model.to(device)

#清零梯度

optimizer.zero_grad()

#向前传播

outputs = model(batchX)

#计算损失

loss = lossf(outputs, batchY)

#反向传播

loss.backward()

#更新模型参数

optimizer.step()

#计算准确率

preds = torch.argmax(outputs, dim=1)

metricsf.update(preds, batchY)

#每个 epoch 结束后打印损失和准确率

epoch_loss = loss.item

epoch_accuracy = metricsf.compute()

print(f'Epoch {i + 1}, Loss: {epoch_loss:.4f},Accuracy: {epoch_accuracy:.4f}')

#置评估指标

metricsf.reset()

#保存模型(将“2-2model_test.pth“文件保存)

torch.save(model.state_dict(), '2-2model_test.pth')

print("模型已经保存为 2-2model_test.pth")

#gs程序分析

1)网络爬虫主要搜索策略及特点(自己使用ai改写到自己能背的情况)

广度优先搜索(BFS):从起始网页开始,先访问完同一层的所有网页,再进入下一层。特点是能较为全面地覆盖网页,不会遗漏较近层次的网页,但可能会消耗较多资源在遍历大量无关网页上。

深度优先搜索(DFS):从起始网页出发,沿着一条路径一直深入访问下去,直到无法继续,再回溯到其他分支。特点是在某些主题明确的网站结构中,能快速深入挖掘相关内容,但可能会陷入某一深度过深的分支,错过其他重要内容。

大站优先搜索:根据一定的评价函数(如网页与目标主题的相关性、网页的重要性等),优先访问最有可能满足需求的网页。特点是可以提高获取目标数据的效率,集中资源在更有价值的网页上,但评价函数的设计较为关键,会影响搜索效果。

2)流程图完善

a)处:判断文件是否为图像文件(可通过文件扩展名判断是否为常见图像格式,如.png.jpg )。

b)处:判断图像文件是否为.png 格式。(tif根据题目要求改)

c)处:判断图像文件分辨率是否为  x x y(根据题目要求改)

3)问题及改善(此题用自己的话回答 不能直接照抄下面的)

问题:严格按格式和分辨率筛,会丢有用图像致数据不足,且仅靠扩展名判格式易误筛。改进:使用Opencv库进行图像处理。

      if filename.lowe().endwith('png'):

        #  此行要背

        image_path = os.path.join(input_folder, filename)

        with Image.open(image_path) as img:

            if img.size != (100,100)  

            #  此行要背

                continue

            output_path = os.path.join(output_folder, filename)

            img.save(output_path)

数据采集培训大纲(以下为参考,自己要修改,与下面一致的会造成雷同)

  1. 基础认知:明晰数据采集概念、重要性与应用场景。
  2. 方法技巧:讲授多种采集方式,涵盖网络、传感器等,分享实操窍门。
  3. 工具运用:熟练掌握 Excel、Python 等工具用于数据获取与整理。

常见问题及解决方法(选2条背)

  1. 目标不明确
    • 问题:未清晰界定采集数据的用途与范围,导致收集大量无关数据,遗漏关键信息。比如市场调研时,不清楚要分析用户哪类消费行为,盲目收集。
    • 解决方法:项目启动前,组织跨部门会议,与业务、分析团队深入沟通,基于业务需求和分析目的,详细梳理数据需求清单,明确数据用途、范围、字段及预期成果。
  2. 样本偏差
    • 问题:选取样本缺乏代表性,如调查城市居民出行方式,仅在高档社区采样,无法反映整体情况。
    • 解决方法:运用科学抽样方法,像分层抽样,按城市区域、收入水平等分层后随机抽取;扩大样本覆盖范围,涵盖不同特征群体,必要时用统计方法评估样本代表性。
  3. 数据来源不可靠
    • 问题:采用劣质数据源,像某些非官方网站数据,可能存在错误、过时或被篡改,影响数据质量。
    • 解决方法:优先选用官方机构、权威数据库等可靠数据源;对新数据源,先小范围验证数据准确性,对比多个来源数据,分析差异。
  4. 采集方法不当
    • 问题:不匹配数据特性与采集手段,如用访谈收集大规模用户行为数据,效率低且易有主观误差。
    • 解决方法:依据数据类型(结构化、非结构化等)和规模,合理选择采集方法,如大规模行为数据用埋点技术,文本数据用网络爬虫;结合多种方法交叉验证数据。
  5. 技术故障
    • 问题:采集工具或系统出现故障,如网络爬虫被网站反爬机制阻断,导致数据中断或丢失。
    • 解决方法:定期维护采集工具和系统,升级软件版本;针对爬虫被阻,采用 IP 代理池、模拟人类浏览行为等策略绕过反爬;设置数据备份机制,实时或定时备份采集数据。
  6. 数据重复采集
    • 问题:缺乏统一规划,不同部门或环节重复收集相同数据,浪费资源。
    • 解决方法:建立企业级数据管理平台,梳理各部门数据需求,绘制数据地图,明确各数据归属与采集责任;制定数据共享规范,促进部门间数据流通。
  7. 隐私与合规问题
    • 问题:采集敏感个人信息未获授权,或违反行业法规,面临法律风险。
    • 解决方法:设立数据合规官,负责解读法规政策;采集前向用户明确告知数据用途、范围、存储方式,获用户同意;加密敏感数据,遵循 “最小必要” 原则采集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值