算法(动态规划)----判断子序列

本文探讨了判断一字符串是否为另一字符串子序列的问题,提供了两种解决方案:一种是一般解法,通过遍历长字符串判断是否包含短字符串,时间复杂度为O(n);另一种是动态规划解法,虽然此题遍历一次即可,但在更复杂场景下,动态规划提供了一种通用且强大的方法。
摘要由CSDN通过智能技术生成

判断子序列

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

你可以认为 s 和 t 中仅包含英文小写字母。字符串 t 可能会很长(长度 ~= 500,000),而 s 是个短字符串(长度 <=100)。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例:

示例 1:
s = "abc", t = "ahbgdc"

返回 true.

示例 2:
s = "axc", t = "ahbgdc"

 一般解法

这题虽然有动态规划的标签,但不用动态规划也可以很容易完成,时间复杂度为O(n)。只需要遍历一些长字符串,在遍历过程中判断遍历的元素和短字符串中的元素是否相同。

public boolean isSubsequence(String s, String t) {
		if(s.equals("")){
			return true;
		}
		int index=0;
		
		for(int i=0;i<t.length();i++){
			
			if(t.charAt(i)==s.charAt(index)){
				index++;
			}
			if(index==s.length()){
				return true;
			}
		}
	
		return false;
    }

动态规划

子序列系列的题目,动态规划是很好的解法。虽然这道题遍历一次就可以得出结果,但对于更高难度的题目,这种方法是完全行不通的,所以,我们依然有必要学会用动规解决这道题目。

思想:

1.这道题无非就是判断从字符串t中能否选出几个字符可以拼成字符串s,那么对于t字符串中的每一个字符都有选或者不选两种选择。这个便是递归的思想

2.而我们这里需要用dp数组记录计算过程,因此我们还需确定在计算过程中,不同的选择会导致那些状态。

2.从题目我们可以看出,dp数组应该有两个约束状态:

  •   字符串t的长度
  •   最多选出s.len个字符 
  •   当前已经从s中选出了几个字符

所以dp数组可以写成二维的形式:

dp[x][y]:

       x代表已经从t中选择了几个字符,x<=s.len ,

       y代表长字符串t从0~x位置的字符串,

状态转移方程:

if s.charAt(x)==t.charAt(y)  dp[x][y]=dp[x-1][y-1]

else dp[x][y]=dp[x][y-1]

即:如果x和y位置的字符相同,那么x位置上的这个字符肯定是t的子字符串,这个时候,如果0-x-1位置上的字符串也是t的子字符串,那么0-x位置的字符串就是t的子字符串。

       如果x和y位置的字符不相同,那么我们需要看s 字符串0~x的位置上的字符是不是t字符串0~y-1位置上字符串的子字符串

public static boolean isSubsequence(String s, String t) {
		int x = s.length();
		int y = t.length();
		boolean[][] dp = new boolean[x + 1][y + 1];
		for (int i = 0; i <= y; i++) {
			dp[0][i] = true;
		}

		for (int i = 1; i <= x; i++) {
			for (int j = 1; j <= y; j++) {
				if (s.charAt(i - 1) == t.charAt(j - 1)) {
					dp[i][j] = dp[i - 1][j - 1];
				} else {
					dp[i][j] = dp[i][j - 1];
				}
			}

		}
		return dp[x][y];
	}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值