- 博客(3)
- 收藏
- 关注
原创 利用开源算法OpenMMLab平台的MMsegmentation库进行语义分割之训练自己的数据集
随着深度学习领域在各行业中的广泛应用,对数据集和算法的需求愈加之大,但正对极其专业的算法对研究人员的程序功底要求甚高,目前很多情况下达不到相应的需求。所以,利用开源算法本身预训练的配置文件,站在巨人的肩膀上进行迁移学习与微调训练是一种不错的选择。本文与上一篇预训练的文章不同之处在于,上一篇文章是直接使用训练好的权重与研究人员配置好的Config文件,而在本文中仅使用Config配置文件,将使用教程公布的西瓜语义分割数据集进行模型权重的生成与结果分析,当然这个数据集也可换成自己领域的专用数据集,方法可以借鉴。
2023-11-10 17:01:41 627
原创 利用开源算法OpenMMLab平台的MMsegmentation库进行语义分割之预训练语义分割
在B站博主同济子豪兄的关于利用MMsegmentation开源代码库进行语义分割的视频中介绍了从数据集的制作、训练自己的网络再到部署网络的全过程,但相信可能包括我在内的一些非计算机专业学生大概率用不到最后的部署环节,所以本文仅对前两个环节中的关键点,容易忽略的地方,在自己复现时候需要注意修改的地方进行简单的总结回顾!利用预训练的模型进行分割结果的预测属于迁移学习的范畴,由于在一些领域的数据集数量与质量无法达到要求,研究人员本身也并不从事算法研究,导致若从随机初始化开始训练模型的过程变得异常的困难与低效。
2023-11-08 17:16:04 638 2
原创 深度学习图像语义分割数据集的使用范围对比(关注几何形状)
推进深度学习向前发展的三驾马车分别为:1. 数据集;2. 计算机的算力;3. 深度学习算法。然而,随着人工智能和深度学习算法在各个领域的应用取得显著的成效,对优质的数据集的要求越来越高,但现在主流的数据集仍然是关于纯计算机领域的应用,所以,选择好的数据集进行跨领域的迁移学习尝试也是计算机视觉(CV)领域常用的可行性方法。由于工程领域没有大范围公开的可用数据集,无法进行大面积的自主应用。1. Cityscapes数据集。
2023-11-07 16:42:09 1327
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人