Datawhale AI夏令营-AI+物质科学Task1 学习笔记

学习目标

跑通baseline,初步体验机器学习的过程

通过调试参数,进一步优化模型

代码解析

数据预处理

前置知识

官方发布的数据是对化学分子的SMILES表达式,具体来说,有rxnid,Reactant1,Reactant2,Product,Additive,Solvent,Yield字段。其中:

  • rxnid 对数据的id标识,无实际意义
  • Reactant1 反应物1
  • Reactant2 反应物2
  • Product 产物
  • Additive 添加剂(包括催化剂catalyst等辅助反应物合成但是不对产物贡献原子的部分)
  • Solvent 溶剂
  • Yield 产率 其中Reactant1,Reactant2,Product,Additive,Solvent都是由SMILES表示。

SMILES 

SMILES,全称是Simplified Molecular Input Line Entry System,是一种将化学分子用ASCII字符表示的方法,是化学信息学领域非常重要的工具。

表1:一些常见的化学结构用SMILES表示。

表2:化学反应也可以用SMILES表示,用“>>”连接产物即可。

由于Reactant1,Reactant2,Product,Additive,Solvent都是由SMILES表示。所以,可以使用rdkit工具直接提取SMILES的分子指纹(向量),作为特征。

预先导入需要用到的库

预先导入所需的库,为下面提取分子指纹和进行随机森林回归做铺垫,这里没什么好解释的......

import pickle
import pandas as pd
from tqdm import tqdm
from sklearn.ensemble import RandomForestRegressor
from rdkit.Chem import rdMolDescriptors
from rdkit import RDLogger,Chem
import numpy as np
RDLogger.DisableLog('rdApp.*')

提取分子指纹

       mfgen函数首先调用rdMolDescriptors.GetMorganFingerprintAsBitVect函数生成Morgan分子手指。将Morgan分子手指转换为位向量形式的字符串,并调用map函数将字符串中的每个元素转换为Python表达式,生成一个列表。最后,函数将生成的列表转换为一个numpy数组,并返回。

       vec_cpd_lst 函数主要将待处理的化合物SMILES字符串转化为numpy数组,方便下一步数据处理,这里还引入的tqdm来显示进度。

def mfgen(mol,nBits=2048, radius=2):
    '''
    Parameters
    ----------
    mol : mol
        RDKit mol object.
    nBits : int
        Number of bits for the fingerprint.
    radius : int
        Radius of the Morgan fingerprint.
    Returns
    -------
    mf_desc_map : ndarray
        ndarray of molecular fingerprint descriptors.
    '''
    # 返回分子的位向量形式的Morgan fingerprint
    fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol,radius=radius,nBits=nBits)
    return np.array(list(map(eval,list(fp.ToBitString()))))

# 加载数据
def vec_cpd_lst(smi_lst):
    smi_set = list(set(smi_lst))
    smi_vec_map = {}
    for smi in tqdm(smi_set): # tqdm:显示进度条
        mol = Chem.MolFromSmiles(smi)
        smi_vec_map[smi] = mfgen(mol)
    smi_vec_map[''] = np.zeros(2048)
    
    vec_lst = [smi_vec_map[smi] for smi in smi_lst]
    return np.array(vec_lst)

向量化

首先读入数据集,读取csv文件,并显示测试集和训练集的大小

dataset_dir = '../dataset'   # # 注:如果是在AI Studio上,将这里改为'dataset'

train_df = pd.read_csv(f'{dataset_dir}/round1_train_data.csv')
test_df = pd.read_csv(f'{dataset_dir}/round1_test_data.csv')

print(f'Training set size: {len(train_df)}, test set size: {len(test_df)}')

    这里向量化的主要目的是加速运算

# 从csv中读取数据
train_rct1_smi = train_df['Reactant1'].to_list()
train_rct2_smi = train_df['Reactant2'].to_list()
train_add_smi = train_df['Additive'].to_list()
train_sol_smi = train_df['Solvent'].to_list()

# 将SMILES转化为分子指纹
train_rct1_fp = vec_cpd_lst(train_rct1_smi)
train_rct2_fp = vec_cpd_lst(train_rct2_smi)
train_add_fp = vec_cpd_lst(train_add_smi)
train_sol_fp = vec_cpd_lst(train_sol_smi)
# 在dim=1维度进行拼接。即:将一条数据的Reactant1,Reactant2,Product,Additive,Solvent字段的morgan fingerprint拼接为一个向量。
train_x = np.concatenate([train_rct1_fp,train_rct2_fp,train_add_fp,train_sol_fp],axis=1)
train_y = train_df['Yield'].to_numpy()

# 测试集也进行同样的操作
test_rct1_smi = test_df['Reactant1'].to_list()
test_rct2_smi = test_df['Reactant2'].to_list()
test_add_smi = test_df['Additive'].to_list()
test_sol_smi = test_df['Solvent'].to_list()

test_rct1_fp = vec_cpd_lst(test_rct1_smi)
test_rct2_fp = vec_cpd_lst(test_rct2_smi)
test_add_fp = vec_cpd_lst(test_add_smi)
test_sol_fp = vec_cpd_lst(test_sol_smi)
test_x = np.concatenate([test_rct1_fp,test_rct2_fp,test_add_fp,test_sol_fp],axis=1)

随机森林回归预测

随机森林原理

集成学习
  集成学习通过训练学习出多个估计器,当需要预测时通过结合器将多个估计器的结果整合起来当作最后的结果输出。
  集成学习的优势是提升了单个估计器的通用性与鲁棒性,比单个估计器拥有更好的预测性能。集成学习的另一个特点是能方便的进行并行化操作。

Bagging算法
  Bagging 算法3是一种集成学习算法,其全称为自助聚集算法(Bootstrap aggregating),顾名思义算法由 Bootstrap 与 Aggregating 两部分组成。

  算法的具体步骤为:假设有一个大小为 N 的训练数据集,每次从该数据集中有放回的取选出大小为 M 的子数据集,一共选 K 次,根据这 K 个子数据集,训练学习出 K 个模型。当要预测的时候,使用这 K 个模型进行预测,再通过取平均值或者多数分类的方式,得到最后的预测结果。

随机森林算法
  将多个决策树结合在一起,每次数据集是随机有放回的选出,同时随机选出部分特征作为输入,所以该算法被称为随机森林算法。可以看到随机森林算法是以决策树为估计器的Bagging算法。
  下图展示了随机森林算法的具体流程,其中结合器在分类问题中,选择多数分类结果作为最后的结果,在回归问题中,对多个回归结果取平均值作为最后的结果。

  使用Bagging算法能降低过拟合的情况,从而带来了更好的性能。单个决策树对训练集的噪声非常敏感,但通过Bagging算法降低了训练出的多颗决策树之间关联性,有效缓解了上述问题。

随机森林预测

这里直接调用sklearn (scikit-learn) 中的函数RandomForestRegressor进行拟合。 

参数解释:

  • n_estimators=10: 决策树的个数,越多越好;但是越多意味着计算开销越大;
  • max_depth: (default=None)设置树的最大深度,默认为None;
  • min_samples_split: 根据属性划分节点时,最少的样本数;
  • min_samples_leaf: 叶子节点最少的样本数;
  • n_jobs=1: 并行job个数,-1表示使用所有cpu进行并行计算。
# Model fitting
model = RandomForestRegressor(n_estimators=10,max_depth=10,min_samples_split=2,min_samples_leaf=1,n_jobs=-1) # 实例化模型,并指定重要参数
model.fit(train_x,train_y) # 训练模型
# 保存模型
with open('./random_forest_model.pkl', 'wb') as file:
    pickle.dump(model, file)
# 加载模型
with open('random_forest_model.pkl', 'rb') as file:
    loaded_model = pickle.load(file)
# 预测\推理
test_pred = loaded_model.predict(test_x)
ans_str_lst = ['rxnid,Yield']
for idx,y in enumerate(test_pred):
    ans_str_lst.append(f'test{idx+1},{y:.4f}')
with open('./submit.txt','w') as fw:
    fw.writelines('\n'.join(ans_str_lst))

成果展示

通过对随机森林中各个参数进行调参,最终将相关系数优化为0.3313.

学习收获

通过学习baseline代码,对于机器学习的大致流程有了深刻的理解,希望下个任务能学到更多知识。

  • 13
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值