第四周学习笔记

### 吴达恩机器学习课程第四周学习笔记 #### 高偏差高方差问题及其解决方法 当遇到高偏差的情况时,采用更复杂的模型结构能够有效降低偏差[^1]。对于高方差的问题,则可以通过引入更多高质量的训练样本来缓解过拟合现象;尽管这种方法并非总是可行,因为获取额外数据可能会受到资源或者环境因素的限制。 GPU技术的发展极大地促进了复杂模型训练效率的提升,在处理大规模数据集以及深层架构方面表现尤为突出,这也成为近年来机器学习领域快速发展的推动力量之一。 #### 构建基于大型语言模型的应用程序潜力 当前阶段,利用预训练的大规模语言模型来开发创新性的应用正成为一个充满活力的研究方向。随着相关理论和技术的进步,开发者们有能力创造出前所未有的智能化解决方案,并推动整个行业向前发展[^2]。 #### 使用深度学习框架进行具体任务实现 TensorFlow 和 PyTorch 提供了强大的工具支持用于构建各种类型的神经网络模型。例如,在咖啡烘焙过程中通过调整参数预测最终产品品质的任务就可以借助这些平台完成。下面给出了一段简单的Python代码片段展示如何定义一个多层感知机来进行此类分类工作: ```python import tensorflow as tf model = tf.keras.models.Sequential([ tf.keras.layers.Dense(64, activation='relu', input_shape=(2,)), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 假设X_train为输入特征矩阵,Y_train为目标标签向量 history = model.fit(X_train, Y_train, epochs=50) ``` 此示例中的`Dense`层即所谓的全连接层,它接收前一层所有节点的信息作为输入并传递给下一层[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值