1224. 最大相等频率
难度 困难
给你一个正整数数组 nums,请你帮忙从该数组中找出能满足下面要求的 最长 前缀,并返回该前缀的长度:
- 从前缀中 恰好删除一个 元素后,剩下每个数字的出现次数都相同。
如果删除这个元素后没有剩余元素存在,仍可认为每个数字都具有相同的出现次数(也就是 0 次)。
示例1:
输入: nums = [2,2,1,1,5,3,3,5]
输出: 7
解释: 对于长度为 7 的子数组 [2,2,1,1,5,3,3],如果我们从中删去 nums[4] = 5,就可以得到 [2,2,1,1,3,3],里面每个数字都出现了两次。
示例2:
输入: nums = [1,1,1,2,2,2,3,3,3,4,4,4,5]
输出: 13
提示:
- 2 <= nums.length <= 105
- 1 <= nums[i] <= 105
解题思路:
使用哈希表 count 记录数 x 出现的次数 count[x],freq 记录出现次数为 f 的数的数目为 freq[f],maxFreq 表示最大出现次数。
依次遍历数组,假设当前访问的数为 nums[i],对应地更新 count,freq 以及maxFreq。以 nums[i] 结尾的数组前缀符合要求的充要条件为满足以下三个条件之一:
- 最大出现次数 maxFreq=1:那么所有数的出现次数都是一次,随意删除一个数既可符合要求。
- 所有数的出现次数都是 maxFreq 或 maxFreq−1,并且最大出现次数的数只有一个:删除一个最大出现次数的数,那么所有数的出现次数都是 maxFreq−1。
- 除开一个数,其他所有数的出现次数都是 maxFreq,并且该数的出现次数为 1:直接删除出现次数为 1 的数,那么所有数的出现次数都是 maxFreq。
Java代码:
class Solution {
public int maxEqualFreq(int[] nums) {
Map<Integer, Integer> freq = new HashMap<Integer, Integer>();
Map<Integer, Integer> count = new HashMap<Integer, Integer>();
int res = 0, maxFreq = 0;
for (int i = 0; i < nums.length; i++) {
if (count.getOrDefault(nums[i], 0) > 0) {
freq.put(count.get(nums[i]), freq.get(count.get(nums[i])) - 1);
}
count.put(nums[i], count.getOrDefault(nums[i], 0) + 1);
maxFreq = Math.max(maxFreq, count.get(nums[i]));
freq.put(count.get(nums[i]), freq.getOrDefault(count.get(nums[i]), 0) + 1);
boolean ok = maxFreq == 1 ||
freq.get(maxFreq) * maxFreq + freq.get(maxFreq - 1) * (maxFreq - 1) == i + 1 && freq.get(maxFreq) == 1 ||
freq.get(maxFreq) * maxFreq + 1 == i + 1 && freq.get(1) == 1;
if (ok) {
res = Math.max(res, i + 1);
}
}
return res;
}
}
Go代码:
func maxEqualFreq(nums []int) (ans int) {
freq := map[int]int{}
count := map[int]int{}
maxFreq := 0
for i, num := range nums {
if count[num] > 0 {
freq[count[num]]--
}
count[num]++
maxFreq = max(maxFreq, count[num])
freq[count[num]]++
if maxFreq == 1 ||
freq[maxFreq]*maxFreq+freq[maxFreq-1]*(maxFreq-1) == i+1 && freq[maxFreq] == 1 ||
freq[maxFreq]*maxFreq+1 == i+1 && freq[1] == 1 {
ans = max(ans, i+1)
}
}
return
}
func max(a, b int) int {
if b > a {
return b
}
return a
}
复杂度分析:
- 时间复杂度:O(n),其中 n 是数组 nums 的长度。遍历数组 nums 需要 O(n)。
- 空间复杂度:O(n)。保存两个哈希表需要 O(n) 的空间。