老谭酸菜

老谭一把拉开车门:没时间解释了,快上车!

fzu 2092 收集水晶(记忆化搜索(dp),dfs)(也可以用bfs)

dp与其说是一种算法,不如说是一种思想。
而记忆化搜索运用了这种思想,即记忆化搜索的实质是dp。它结合了dp与搜索的优点,在搜索的基础上记录每个状态“是否已经计算过”,以此提高效率。
一般说来,dp总要遍历所有的状态,而搜索可以排除一些无效状态。
更重要的是搜索还可以剪枝,可能剪去大量不必要的状态,因此在空间开销上往往比动态规划要低很多。
也可以这样理解,将dp作为一种问题求解方法,记忆化搜索的方法可以计算状态转移方程。

总结起来:
记忆化搜索就是保证搜过的不再搜。
这是dp的一个出发点。
一个问题,如果阶段好划分,状态好确定。很多用递推来写。
如果阶段不好划分,或者说对于拓扑关系很复杂的dp,很多就用记忆化搜索来写。

回到这个题,开始看到影流之主(雾)找宝石(骑士),两个人的搜索。我在想是不是双向搜索,后来看到是找val水晶,就知道这肯定是个dp。
这里v相对较大,nm相对较小。命题人应该是考虑让我们用记忆化搜索。

dp[11][11][11][11][205]定义为两个人分别从两个位置,第t秒出发所获得的最大值。(也就是状态)。
注意,这里不能开太大,之前就是开到[20][20][20][20][210]就mle了。

值得注意的是移动方式有5种。
(1,0)(-1,0)(0,1)(0,-1)(0,0)

if (dp[dx1][dy1][dx2][dy2][t]!=-1) return dp[dx1][dy1][dx2][dy2][t];

记忆化搜索体现

还有一个小问题就是要想到注意越界,数据中有两个水晶在同一时间同一位置的。(出题人简直蛇精病好吧)

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
        int dir[5][2]= {1,0,-1,0,0,1,0,-1,0,0};
int dp[11][11][11][11][205];
int val[11][11][205];
char map[11][11];
int n,m;
int dfs(int dx1,int dy1,int dx2,int dy2,int t)
{
    int dx3,dy3,dx4,dy4;
    if (t>200) return 0;
    if (dx1<0 || dx1>=n || dy1<0 || dy1>=m) return 0;
    if (dx2<0 || dx2>=n || dy2<0 || dy2>=m) return 0;
    if (map[dx1][dy1]=='#' || map[dx2][dy2]=='#') return 0;
    if (dp[dx1][dy1][dx2][dy2][t]!=-1) return dp[dx1][dy1][dx2][dy2][t];
    int tmp = 0,mx = 0;
    for (int i=0; i<5; i++)
    {

        for (int j=0; j<5; j++)
        {
            dx3=dx1+dir[i][0];
            dy3=dy1+dir[i][1];
            dx4=dx2+dir[j][0];
            dy4=dy2+dir[j][1];
            tmp=dfs(dx3,dy3,dx4,dy4,t+1);
            if (tmp>mx) mx=tmp;
        }
    }
    dp[dx1][dy1][dx2][dy2][t]=mx;
    if (dx1==dx2 && dy1==dy2) dp[dx1][dy1][dx2][dy2][t]+=val[dx1][dy1][t];
    else
        dp[dx1][dy1][dx2][dy2][t]+=val[dx1][dy1][t]+val[dx2][dy2][t];
    return dp[dx1][dy1][dx2][dy2][t];
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        memset(dp,-1,sizeof(dp));
        memset(val,0,sizeof(val));
       // memset(map,NULL,sizeof(map));
        cin>>n>>m;
        getchar();
        for(int i=0; i<n; i++)
            gets(map[i]);
        int p;
        cin>>p;
        while(p--)
        {
            int k,x,y,v;
            cin>>k>>x>>y>>v;
            val[x-1][y-1][k]+=v;
        }
        cout<<dfs(0,0,0,0,0)<<endl;
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Cormac2015/article/details/51148370
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭