题目链接:点击进入
题目
题意
一个长度为 n 的数组,你可以对数组重新排序,求 m-区间 最少有多少个,m-区间 是指对于区间内的每个 a [ i ] 与 a [ i + 1 ] 的和都能被 m 整除( 如果区间只有一个值,那么这个区间也算 m-区间 )
思路
将每个数都对 m 取余,将取余后值相同的数放在一起,我们知道对 m 取余会得到 0 - m-1 内的数,我们把取余等于 0 的数都放在一个区间,对于 1 - m-1 ,我们枚举余数 i ,看能与此余数互补的数 m - i 有多少,如果两者相差不超过 1 ( 交叉摆放 ),那么 1 个区间足以,否则,多出来的 x 个只能多出 x 个区间。对于 m ,奇偶数可以分开讨论,因为偶数 m 的余数 m / 2 可以自成一个区间。
代码
#include<iostream>
#include<string>
#include<map>
#include<set>
//#include<unordered_map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<fstream>
#define X first
#define Y second
#define best 131
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define lowbit(x) x & -x
#define inf 0x3f3f3f3f
#define int long long
//#define double long double
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pai=acos(-1.0);
const int maxn=1e6+10;
const int mod=1e9+7;
const double eps=1e-9;
int t,n,m,k,a[maxn],p[maxn];
bool vis[maxn];
map<int,int>mp;
signed main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);cout.tie(0);
cin>>t;
while(t--)
{
mp.clear();
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>a[i];
a[i]%=m;
mp[a[i]]++;
}
int ans=0;
if(m&1)
{
for(int i=1;i<=m/2;i++)
{
int a1=mp[i];
int a2=mp[m-i];
if(!a1&&a2)
{
ans+=a2;
continue;
}
if(!a2&&a1)
{
ans+=a1;
continue;
}
int tmp=abs(a1-a2);
if(tmp>=2)
ans=ans+max(a1,a2)-min(a1,a2)-1;
if(a1&&a2) ans++;
}
if(mp[0]) ans++;
}
else
{
for(int i=1;i<m/2;i++)
{
int a1=mp[i];
int a2=mp[m-i];
if(!a1&&a2)
{
ans+=a2;
continue;
}
if(!a2&&a1)
{
ans+=a1;
continue;
}
int tmp=abs(a1-a2);
if(tmp>=2)
ans=ans+max(a1,a2)-min(a1,a2)-1;
if(a1&&a2) ans++;
}
if(mp[0]) ans++;
if(mp[m/2]) ans++;
}
cout<<ans<<endl;
}
return 0;
}