题目链接:点击进入
题目
题意
就是求 >= n 的数中,最小的,满足 k 美丽数的数。
k 美丽数,是指数中不同的数字的数量 <= k
思路
一开始没想到数位,寄!
数位dp的一次solve计算的结果通常以类似前缀和的结果返回 ( 就是返回 [ 1 , r ] 内满足条件的数的个数 )
二分答案,考虑 solve ( mid ) - solve ( n - 1 ) 的值,这个值具有单调性(结合上面的结论,大概就知道,mid 越大,solve ( mid ) - solve ( n - 1 ) 的值越大或不变,取 n - 1 是题目说答案要 >= n )。
剩下的,,,就是dp记录的状态了。
dp [ pos ] [ state ] [ j ] :k = j 时,前 pos 位状态为 state 时的情况数。
这里state实际上记录的是到目前为止不同数字的数量,因为数字一共9种,对于数字i,采用state|(1<<i)就可以将它记录到state中,但是这时候state实际上是一个或值,它二进制下1的个数就是不同数字的数量,可以用__builtin_popcount(state)函数解决。
还得考虑前导零的影响,前导零不可以计入状态。
最后一位的 j ,不可以少 ( 我的少不了 ) ,会 T ( 我的会 T ),要是二维 dp [ pos ] [ state ] 在加上每个 k 都 memset 一下dp 数组,也可以出答案,但是会 T ,可能是因为 k 只有 10 种,中间会有大量重复的 k ,因此将每个 k 的情况记录下来,而不是每次 memset 重新求,那样耗时间。
代码
//#pragma GCC optimize(3)//O3
//#pragma GCC optimize(2)//O2
#include<iostream>
#include<string>
#include<map>
#include<set>
//#include<unordered_map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<fstream>
#define X first
#define Y second
#define best 131
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define lowbit(x) x & -x
#define inf 0x3f3f3f3f
// #define int long long
//#define double long double
//#define rep(i,x,y) for(register int i = x; i <= y;++i)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pai=acos(-1.0);
const int maxn=1e6+10;
const int mod=1e9+7;
const double eps=1e-9;
const int N=5e3+10;
/*--------------------------------------------*/
inline int read()
{
int k = 0, f = 1 ;
char c = getchar() ;
while(!isdigit(c)){if(c == '-') f = -1 ;c = getchar() ;}
while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48 ,c = getchar() ;
return k * f ;
}
/*--------------------------------------------*/
int t,n,k,cnt[1030];
int a[20];
ll dp[20][1030][12];
ll dfs(int pos,int pre,int state,bool lead,bool limit)
{
if(pos==-1&&__builtin_popcount(state)<=k) return 1;
if(!limit&&!lead&&dp[pos][state][k]!=-1) return dp[pos][state][k];
int up=limit?a[pos]:9;
ll res=0;
for(int i=0;i<=up;i++)
{
if(i==0&&lead) res+=dfs(pos-1,i,state,lead&&i==0,limit&&i==a[pos]);
else
{
if(__builtin_popcount((state|(1<<i)))>k) continue;
res+=dfs(pos-1,i,(state|(1<<i)),lead&&i==0,limit&&i==a[pos]);
}
}
if(!limit&&!lead) dp[pos][state][k]=res;
return res;
}
ll solve(int x)
{
int pos=0;
while(x)
{
a[pos++]=x%10;
x/=10;
}
return dfs(pos-1,-1,0,1,1);
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);cout.tie(0);
memset(dp,-1,sizeof(dp));
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
ll num=solve(n-1);
ll l=n,r=2e9,ans=0;
while(l<=r)
{
int mid=l+r>>1;
if(solve(mid)-num>=1)
{
r=mid-1;
ans=mid;
}
else
l=mid+1;
}
printf("%lld\n",ans);
}
return 0;
}