题目链接:点击进入
题目
题意
对于 s 长度为 i 的前缀 ( i >= 2 ) ,若是满足完全由循环节构成,且循环周期 k > 1,输出此前缀的长度以及循环周期。
思路
kmp 判断循环节以及求解循环周期
定理:假设 S 的长度为 len ,则 S 存在最小循环节,循环节的长度 L 为 len – next [ len ]
如果 len 可以被 len - next [ len ] 整除,则表明字符串 S 可以完全由循环节循环组成,循环周期 T = len / L 。
将这个结论里的 len 换成 i ,就是求每个前缀的最小循环节。
代码
// Problem: Oulipo
// Contest: Virtual Judge - POJ
// URL: https://vjudge.net/problem/POJ-3461
// Memory Limit: 65 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//#pragma GCC optimize(3)//O3
//#pragma GCC optimize(2)//O2
#include<iostream>
#include<string>
#include<map>
#include<set>
//#include<unordered_map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<fstream>
#define X first
#define Y second
#define base 233
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define lowbit(x) x & -x
#define inf 0x3f3f3f3f
//#define int long long
//#define double long double
//#define rep(i,x,y) for(register int i = x; i <= y;++i)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pai=acos(-1.0);
const int maxn=1e6+10;
const int mod=1e9+7;
const double eps=1e-9;
const int N=5e3+10;
/*--------------------------------------------*/
inline int read()
{
int k = 0, f = 1 ;
char c = getchar() ;
while(!isdigit(c)){if(c == '-') f = -1 ;c = getchar() ;}
while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48 ,c = getchar() ;
return k * f ;
}
/*--------------------------------------------*/
int n,Next[maxn];
void getnext(string s,int len)
{
int k=-1,j=0;
Next[0]=-1;
while(j<len)
{
if(k==-1||s[j]==s[k])
{
k++;
j++;
Next[j]=k;
}
else k=Next[k];
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int tot=0;
while(cin>>n)
{
if(n==0) break;
string s;
cin>>s;
int len=s.size();
getnext(s,len);
cout<<"Test case #"<<++tot<<endl;
for(int i=1;i<=len;i++)
{
int l=i-Next[i];
if(i%l==0&&i/l>1)
cout<<i<<" "<<i/l<<endl;
}
for(int i=0;i<=len;i++) Next[i]=0;
cout<<endl;
}
return 0;
}