LeetCode:2589.完成所有任务的最少时间(贪心 Java)

目录

完成所有任务的最少时间

题目描述:

实现代码与解析:

贪心

原理思路:


完成所有任务的最少时间

题目描述:

        你有一台电脑,它可以 同时 运行无数个任务。给你一个二维整数数组 tasks ,其中 tasks[i] = [starti, endi, durationi] 表示第 i 个任务需要在 闭区间 时间段 [starti, endi] 内运行 durationi 个整数时间点(但不需要连续)。

当电脑需要运行任务时,你可以打开电脑,如果空闲时,你可以将电脑关闭。

请你返回完成所有任务的情况下,电脑最少需要运行多少秒。

示例 1:

输入:tasks = [[2,3,1],[4,5,1],[1,5,2]]
输出:2
解释:
- 第一个任务在闭区间 [2, 2] 运行。
- 第二个任务在闭区间 [5, 5] 运行。
- 第三个任务在闭区间 [2, 2] 和 [5, 5] 运行。
电脑总共运行 2 个整数时间点。

示例 2:

输入:tasks = [[1,3,2],[2,5,3],[5,6,2]]
输出:4
解释:
- 第一个任务在闭区间 [2, 3] 运行
- 第二个任务在闭区间 [2, 3] 和 [5, 5] 运行。
- 第三个任务在闭区间 [5, 6] 运行。
电脑总共运行 4 个整数时间点。

提示:

  • 1 <= tasks.length <= 2000
  • tasks[i].length == 3
  • 1 <= starti, endi <= 2000
  • 1 <= durationi <= endi - starti + 1

实现代码与解析:

贪心

class Solution {
    public int findMinimumTime(int[][] tasks) {

        Arrays.sort(tasks, (a, b) -> a[1] - b[1]); // 右端点排序
        int res = 0;
        boolean[] hash = new boolean[2010]; // 已经有任务运行的点

        for (int[] t: tasks) {
            int l = t[0];
            int r = t[1];
            int d = t[2];

            for (int i = l; i <= r; i++) { // 先在已运行点上添加任务
                if (hash[i]) d--;
            }
            while (d > 0) {
                if (!hash[r]) {
                    hash[r] = true;
                    res++;
                    d--;
                }
                r--;
            }
        }
        return res;
    }
}

原理思路:

        这种分段求最大或最小的题很明显就是贪心,贪心要么左端点排序,要么右端点排序,这题是右端点排序,贪心思路就是:尽可能在线段右侧运行任务,这样在后面的时间段就可以最大程度的复用前一个时间段已经运行任务的时间点。hash记录一下对于时间点有无任务在运行。

给定一个整数数组 nums 和一个目标值 target,要求在数组中找出两个数的和等于目标值,并返回这两个数的索引。 思路1:暴力法 最简单的思路是使用两层循环遍历数组的所有组合,判断两个数的和是否等于目标值。如果等于目标值,则返回这两个数的索引。 此方法的时间复杂度为O(n^2),空间复杂度为O(1)。 思路2:哈希表 为了优化时间复杂度,可以使用哈希表来存储数组中的元素和对应的索引。遍历数组,对于每个元素nums[i],我们可以通过计算target - nums[i]的值,查找哈希表中是否存在这个差值。 如果存在,则说明找到了两个数的和等于目标值,返回它们的索引。如果不存在,将当前元素nums[i]和它的索引存入哈希表中。 此方法的时间复杂度为O(n),空间复杂度为O(n)。 思路3:双指针 如果数组已经排序,可以使用双指针的方法来求解。假设数组从小到大排序,定义左指针left指向数组的第一个元素,右指针right指向数组的最后一个元素。 如果当前两个指针指向的数的和等于目标值,则返回它们的索引。如果和小于目标值,则将左指针右移一位,使得和增大;如果和大于目标值,则将右指针左移一位,使得和减小。 继续移动指针,直到找到两个数的和等于目标值或者左指针超过了右指针。 此方法的时间复杂度为O(nlogn),空间复杂度为O(1)。 以上三种方法都可以解决问题,选择合适的方法取决于具体的应用场景和要求。如果数组规模较小并且不需要考虑额外的空间使用,则暴力法是最简单的方法。如果数组较大或者需要优化时间复杂度,则哈希表或双指针方法更合适。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cosmoshhhyyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值