Nagel-Schreckenberg模型python实现

本文详细代码见我的github仓库 AI_ML_DataAnalysis_DataVisualization_Classic-Examples

Nagel-Schreckenberg模型是高速公路交通模拟的理论模型。该模型由德国物理学家Kai Nagel和Michael Schreckenberg于20世纪90年代初开发。它本质上是用于道路交通流量的简单元胞自动机模型,其可以再现交通拥堵,即,当道路拥挤时显示平均车速减慢。
现在模拟一个场景,在一个环形公路上,所有车围成一个圆,每辆车有一定的概率减速.当后面的车的车速比它前面相邻的车车速快时,即将产生追及问题时,后面的车就必须减速,这样就会导致各种不同情况的拥堵.
模拟代码如下:
减速概率p,车辆初速度v都可以手动改变,以测试不同情况
ns.ttc是一个字库,需要导入
当减速概率p为0.5时:

# -*- coding: utf-8 -*-

from matplotlib.font_manager import *
import matplotlib.pyplot as plt
import numpy as np

myfont = FontProperties(fname='ns.ttc')
matplotlib.rcParams['axes.unicode_minus'] = False
np.random.seed(0)


def Run(path=5000, n=100, v0=60, ltv=120, p=
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值