求解斐波那契第n项的几种解法(含矩阵乘法+快速幂) Python实现

斐波那契数列

首先我们来定义一下斐波那契数列:
f ( n ) = { 0 n = 0 1 n = 1 f ( n − 1 ) + f ( n − 2 ) n > 1 f(n)= \begin{cases} 0 & \text {n = 0} \\ 1 & \text{n = 1}\\ f(n-1)+f(n-2) & \text{n > 1} \end{cases} f(n)=01f(n1)+f(n2)n = 0n = 1n > 1
即数列的第0项 a 0 = 1 a_0=1 a0=1 a 1 = 1 a_1=1 a1=1 a n = a n − 1 + a n − 2 a_n = a_{n-1} + a_{n-2} an=an1+an2

求解斐波那契的解法有如下几种解法。

算法一:递归

递归计算的节点个数是 O ( 2 n ) O(2^n) O(2n) 的级别的,效率很低,存在大量的重复计算。

比如:

f(10) = f(9) + f(8)

f(9) = f(8) + f(7) 重复 8

f(8) = f(7) + f(6) 重复 7

时间复杂度是 O ( 2 n ) O(2^n) O(2n) ,极慢。

def F1(n):
    if n <= 1: return max(n, 0)  # 前两项
    return F1(n-1)+F1(n-2)  # 递归

算法二:记忆化搜索

开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。但由于是递归计算,递归层数太多会爆栈。

res = [None]*100000

def F2(n):
    if n <= 1: return max(n, 0)
    if res[n]: return res[n]  # 如果已存在则直接查找返回结果
    res[n] = F2(n-1)+F2(n-2)  # 不存在则计算
    return res[n]

算法三:递推

开一个大数组,记录每个数的值。用循环递推计算。
总共计算 n 个状态,所以时间复杂度是 O(n)。但需要开一个长度是 n 的数组,内存将成为瓶颈。

def F3(n):
    if n <= 1: return max(n, 0)
    res = [0, 1]
    for i in range(2,n+1):
        res.append(res[i-1]+res[i-2])
    return res[n]

算法四:递归+滚动变量

比较优秀的一种解法。仔细观察我们会发现,递推时我们只需要记录前两项的值即可,没有必要记录所有值,所以我们可以用滚动变量递推。
时间复杂度还是 O(n),但空间复杂度变成了 O(1)。

def F4(n):
    if n <= 1: return max(n, 0)
    fn, f0, f1 = 0, 1, 0  # fn为最终结果,f0为第0项,f1为第一项,
    for i in range(2, n+1):
        fn = f0 + f1  # 前两项和
        f0, f1 = f1, fn  # 递推变量
    return fn

算法五:矩阵乘法+快速幂

利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 n 项。

先说通式:
[ a n + 1 a n a n a n − 1 ] = [ 1 1 1 0 ] n \begin{bmatrix} a_{n+1} &amp; a_{n} \\ a_{n} &amp; a_{n-1} \\ \end{bmatrix}= \begin{bmatrix} 1 &amp; 1 \\ 1 &amp; 0 \\ \end{bmatrix}^n [an+1ananan1]=[1110]n

利用数学归纳法证明:
这里的a0,a1,a2是对应斐波那契的第几项
令 A = [ 1 1 1 0 ] , 则 A 1 = [ a 2 a 1 a 1 a 0 ] 显 然 成 立 令A =\begin{bmatrix} 1 &amp; 1 \\ 1 &amp; 0 \\ \end{bmatrix},则A^1 = \begin{bmatrix} a_{2} &amp; a_{1} \\ a_{1} &amp; a_{0} \\ \end{bmatrix} 显然成立 A=[1110]A1=[a2a1a1a0]

A n = A n − 1 × A = [ a n a n − 1 a n − 1 a n − 2 ] × [ a 2 a 1 a 1 a 0 ] = [ a n + 1 a n a n a n − 1 ] A^n = A^{n-1} \times A = \begin{bmatrix} a_{n} &amp; a_{n-1} \\ a_{n-1} &amp; a_{n-2} \\ \end{bmatrix} \times \begin{bmatrix} a_{2} &amp; a_{1} \\ a_{1} &amp; a_{0} \\ \end{bmatrix}= \begin{bmatrix} a_{n+1} &amp; a_{n} \\ a_{n} &amp; a_{n-1} \\ \end{bmatrix} An=An1×A=[anan1an1an2]×[a2a1a1a0]=[an+1ananan1]

证毕。

所以我们想要的得到 a n a_n an ,只需要求得 A n A^n An ,然后取第一行第二个元素即可。

如果只是简单的从0开始循环求n次方,时间复杂度仍然是O(n),并不比前面的快。我们可以考虑乘方的如下性质,即快速幂:
a n = { a n / 2 ⋅ a n / 2 n 为偶数 a ( n − 1 ) / 2 ⋅ a ( n − 1 ) / 2 ⋅ a n 为奇数 a^n= \begin{cases} a^{n/2} \cdot a^{n/2} &amp; \text {n 为偶数} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a &amp; \text {n 为奇数} \end{cases} an={an/2an/2a(n1)/2a(n1)/2a为偶数为奇数
这样只需要 logn 次运算即可得到结果,时间复杂度为 O(logn)

def mul(a, b):  # 首先定义二阶矩阵乘法运算
    c = [[0, 0], [0, 0]]  # 定义一个空的二阶矩阵,存储结果
    for i in range(2):  # row
        for j in range(2):  # col
            for k in range(2):  # 新二阶矩阵的值计算
                c[i][j] += a[i][k] * b[k][j]
    return c

def F5(n):
    if n <= 1: return max(n, 0)
    res = [[1, 0], [0, 1]]  # 单位矩阵,等价于1
    A = [[1, 1], [1, 0]]  # A矩阵
    while n:
        if n & 1: res = mul(res, A)  # 如果n是奇数,或者直到n=1停止条件
        A = mul(A, A)  # 快速幂
        n >>= 1  # 整除2,向下取整
    return res[0][1]

总的来说不是很难,适合扩展思路。

Reference

求解斐波那契数列的若干方法

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
斐波那契数列可以用矩阵快速幂的方法求解,时间复杂度为O(logn)。下面是使用矩阵快速幂求解斐波那契数列第n的C++代码。 ```c++ #include <iostream> #include <vector> using namespace std; // 矩阵乘法 vector<vector<long long>> matrixMultiply(vector<vector<long long>>& a, vector<vector<long long>>& b) { int m = a.size(); int n = b[0].size(); int l = b.size(); vector<vector<long long>> c(m, vector<long long>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } // 矩阵快速幂 vector<vector<long long>> matrixPow(vector<vector<long long>>& a, int n) { vector<vector<long long>> ans = {{1, 0}, {0, 1}}; // 单位矩阵 while (n > 0) { if (n & 1) ans = matrixMultiply(ans, a); a = matrixMultiply(a, a); n >>= 1; } return ans; } // 斐波那契数列第n long long fib(int n) { if (n == 0) return 0; vector<vector<long long>> a = {{1, 1}, {1, 0}}; vector<vector<long long>> b = {{1}, {0}}; vector<vector<long long>> c = matrixMultiply(matrixPow(a, n - 1), b); return c[0][0]; } int main() { int n; cout << "请输入n的值: "; cin >> n; cout << "斐波那契数列第" << n << "的值为: " << fib(n) << endl; return 0; } ``` 该方法的思路是将斐波那契数列的递推式转化为矩阵形式,即 ``` | F(n) | | 1 1 | | F(n-1) | | F(n-1) | = | 1 0 | * | F(n-2) | ``` 然后通过矩阵快速幂的方式出矩阵A的n-1次方,再用矩阵A的n-1次方乘以向量B,得到结果矩阵C,矩阵C的第一行第一列就是斐波那契数列的第n的值。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值