线性回归是机器学习中最基础和常用的模型之一。它通过建立一个线性关系来预测特征与目标之间的关系。在本篇文章中,我们将详细介绍如何实现和应用线性回归模型,并提供相应的源代码。
-
数据集准备
在开始之前,我们首先需要准备一个合适的数据集。在这个例子中,我们使用一个简单的二维数据集,其中特征X与目标Y之间存在线性关系。import numpy as np # 生成随机数据集 np.random.seed(0) X = np.random.rand(
线性回归是机器学习中最基础和常用的模型之一。它通过建立一个线性关系来预测特征与目标之间的关系。在本篇文章中,我们将详细介绍如何实现和应用线性回归模型,并提供相应的源代码。
数据集准备
在开始之前,我们首先需要准备一个合适的数据集。在这个例子中,我们使用一个简单的二维数据集,其中特征X与目标Y之间存在线性关系。
import numpy as np
# 生成随机数据集
np.random.seed(0)
X = np.random.rand(