机器学习作业1:线性回归模型的实现与应用

本文详细介绍了如何实现和应用线性回归模型,从数据集准备到模型建立、训练,再到评估和预测,最后通过可视化展示模型性能。线性回归在实际问题中,如预测房价、销量等,具有广泛的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归是机器学习中最基础和常用的模型之一。它通过建立一个线性关系来预测特征与目标之间的关系。在本篇文章中,我们将详细介绍如何实现和应用线性回归模型,并提供相应的源代码。

  1. 数据集准备
    在开始之前,我们首先需要准备一个合适的数据集。在这个例子中,我们使用一个简单的二维数据集,其中特征X与目标Y之间存在线性关系。

    import numpy as np
    
    # 生成随机数据集
    np.random.seed(0)
    X = np.random.rand(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值