深度学习 - TensorFlow神经网络: 手写数字识别

本文介绍如何利用TensorFlow构建神经网络模型,针对MNIST数据集进行手写数字识别。通过数据预处理、模型定义、训练及评估,实现对28x28像素灰度图像的准确预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

手写数字识别是深度学习领域的经典问题之一,它涉及将手写的数字图像识别为相应的数字。在本文中,我们将使用TensorFlow库构建一个神经网络模型,通过对MNIST数据集的训练和测试来实现手写数字识别。

MNIST数据集是一个广泛使用的手写数字数据集,包含了大量的手写数字图像和相应的标签。每张图像都是28x28像素的灰度图像,标签是0到9之间的数字,表示图像所代表的数字。我们的目标是训练一个神经网络模型,使其能够准确地预测给定图像的数字标签。

首先,让我们导入所需的库:

import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值