Codeforces::GYM 102896E Easy Measurements

本文介绍了一种数学问题的解题思路与方法,通过给定的正整数b和d,求解满足特定等式的正整数a和c的组合数量。该问题涉及数论中的整除性和约分技巧,提供了一段C++代码实现了解题算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题目大意

给定正整数 b , d b, d b,d,求存在多少组正整数 a , b a, b a,b ,满足 a b + c d = b d \frac{a}{b} + \frac{c}{d} = \frac{b}{d} ba+dc=db

解题思路

式子变形得 a = b ( b − c ) d a = \frac{b(b - c)}{d} a=db(bc) ,那么就是找有多少个可以正整数 c c c 的值,能让 a a a 也为正整数。
显然, c c c 的取值范围为 ( 0 , b ) (0, b) (0,b) 之内的正整数。那么那些可以让右侧分式可以整除呢?我们可以先将 b b b d d d 约分,得到 a = p ( b − c ) q a = \frac{p(b - c)}{q} a=qp(bc) ,其中 p , q p,q p,q 互质。然后只有 b − c b - c bc q q q 的倍数时,才能让 a a a 是正整数

参考代码
#include<bits/stdc++.h>
using namespace std;
int main(){
	int n;
	cin >> n;
	while(n --){
		int b, d;
		cin >> b >> d;
		d /= __gcd(b, d);
		cout << (b + d - 1) / d - 1 << '\n';
	}
	return 0;
} 

注:如果想要求 ⌈ a b ⌉ \lceil \frac{a}{b} \rceil ba,可以计算 ( a + b − 1 ) / b (a + b - 1) / b (a+b1)/b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值