一、流的形成方法
1. 集合 ---> 流
集合.stream()
2. 数字流的形成(int型为例)
IntStram.of(1,2,3,4)
3. 数组 ---> 流
Arrays.stream(数组)
4. 把文件中的每一行读出来作为流的元素
Files.lines(Paths.get("aaa.txt"))
5. 生产者接口的使用
Stream.generate(生产者接口)
举例:
生成5个随机数
Random r = new Random();
Stream.generate( () -> r.nextInt(100) ).limit(5).forEach( x->System.out.println(x));
二、重要接口
1. Predicate 断言接口
对应的lambda:
一个参数,返回结果是boolean
(a) -> { return true|false; }
2. Function 函数接口
对应的lambda:
一个参数,一个返回结果,参数和返回结果的类型可以不一样
3. BiPredicate 双参数断言
对应的lambda:
两个参数,返回结果是boolean
(a, b) -> { return true|false; }
4. BiFunction 双参数函数接口
两个参数,一个结果
(a, b) -> { 根据ab返回一个结果}
5. Consumer 消费接口
一个参数 没有结果
(a) -> { 不需要return }
6. BiConsumer 双参数消费接口
两个参数,没有结果
7. Supplier 生产者接口
没有参数,返回一个结果
() -> {return 结果}
三、Stream API
Stream
1. filter(Predicate<? super T> predicate)
过滤,参数是一个断言接口
作用:用于过滤流中的元素,返回true留下,返回false去除
返回:Stream类型
2. map(Function<? super T,? extends R> mapper)多个
映射,参数是一个函数接口
作用:用于对流中的元素进行改变等操作,比如加减乘除
返回:Stream类型
3. flatMap(Function<? super T,? extends Stream<? extends R>>mapper)
扁平化映射,参数是一个函数接口
作用:将所有元素都放入流中
返回:Stream类型
4. forEach(Consumer<? super T> action)
遍历,参数为消费者接口
作用:用于遍历
返回:void
5. distinct()
去重复,无需参数
作用:用于去除流中的重复元素
返回:Stream类型
6. count()
统计个数,无需参数
作用:用于返回流中的元素 个数
返回:long类型
7. max(Comparator<? super T> comparator)
最大值,参数为比较器
作用:用于返回流中最大的元素
返回:Optional类型
min(Comparator<? super T> comparator)
同理
数字流(例:IntStream)
IntStream intstream = IntStream.Of(1,2,3,4)
instream.max() 求最大值
instream.min() 求最小值
instream.average() 求平均值
instream.sum() 求和
注意:以上方法不可以向举例中一样连续调用
原因见Stream api思想
收集流的结果
1. 将流转换为集合
Collectors为收集器
流.collect(Collectors.toList) //转换为List集合
流.collect(Collectors.toSet) //转换为Set集合
2.限制收集个数
limit(int num) num为收集的个数
格式:
流.limit(3).collect(Collectors.toList) //之收集前三个结果
3.分组
流.collect(Collectors.groupingBy(函数接口))
返回Map集合key是组名,value为组员的集合
举例:
创建集合学生集合名为student,集合中都是学生对象
//按照性别分组
Map<String, List<Student>> mp = students.stream().collect(Collectors.groupingBy((s) -> s.getSex() ));
System.out.pringln(mp); //打印看结果
4.下游收集器
流.collect(Collectors.groupingBy(函数接口,Collectors.counting()))
工作方式:先分组,在求每组内元素个数
返回Map集合,key为组名,value为每组的个数
四、并行计算
List<Integer> list = Arrays.aslist(1,2,3,4);
int sum = list.parallelStream().mapToInt(a -> a).sum();
// 获得集合的并行流 转为数字流 求和
System.out.println(sum);
//结果为 10
五、Stream API中重要思想
流水线思想(Pipeline):
把流中的数据一个接一个的进行处理,即每个数据都会经过后续的filter、map等方法的依次调用。
在整个执行过程中,lambda表达式是懒惰的,不执行终结方法的话,不会触发lambda的执行。
终结方法: collect, sum, max, min 等
运算过程中不会改变原始集合,收集器会生成新的集合对象。