Java中的Stream API :)

一、流的形成方法

1. 集合 ---> 流
   集合.stream()
2. 数字流的形成(int型为例)
   IntStram.of(1,2,3,4)
3. 数组 ---> 流
   Arrays.stream(数组)
4. 把文件中的每一行读出来作为流的元素
   Files.lines(Paths.get("aaa.txt"))
5. 生产者接口的使用 
   Stream.generate(生产者接口)
   举例:
   生成5个随机数
   Random r = new Random();
   Stream.generate( () -> r.nextInt(100) ).limit(5).forEach( x->System.out.println(x));    

二、重要接口

1. Predicate 断言接口
    对应的lambda:
    一个参数,返回结果是boolean
    (a) -> {  return true|false; }
    
2. Function 函数接口
    对应的lambda:
    一个参数,一个返回结果,参数和返回结果的类型可以不一样
    
3. BiPredicate 双参数断言
    对应的lambda:
    两个参数,返回结果是boolean
    (a, b) -> {  return true|false; }
    
4. BiFunction 双参数函数接口
    两个参数,一个结果
    (a, b) -> { 根据ab返回一个结果}
5. Consumer 消费接口
    一个参数 没有结果
    (a) -> { 不需要return }
    
6. BiConsumer 双参数消费接口
    两个参数,没有结果
    
7. Supplier 生产者接口
    没有参数,返回一个结果 
    () -> {return 结果}

三、Stream API

Stream
1. filter(Predicate<? super T> predicate)
   过滤,参数是一个断言接口
   作用:用于过滤流中的元素,返回true留下,返回false去除
   返回:Stream类型
   
2. map(Function<? super T,? extends R> mapper)多个
   映射,参数是一个函数接口
   作用:用于对流中的元素进行改变等操作,比如加减乘除
   返回:Stream类型
   
3. flatMap(Function<? super T,? extends Stream<? extends R>>mapper)   
   扁平化映射,参数是一个函数接口
   作用:将所有元素都放入流中
   返回:Stream类型
4. forEach(Consumer<? super T> action)
   遍历,参数为消费者接口
   作用:用于遍历
   返回:void
5. distinct() 
   去重复,无需参数
   作用:用于去除流中的重复元素
   返回:Stream类型
6. count()
   统计个数,无需参数
   作用:用于返回流中的元素 个数
   返回:long类型
7. max(Comparator<? super T> comparator) 
   最大值,参数为比较器
   作用:用于返回流中最大的元素
   返回:Optional类型
   min(Comparator<? super T> comparator) 
   同理
数字流(例:IntStream)
IntStream intstream = IntStream.Of(1,2,3,4)
instream.max()   求最大值
instream.min()   求最小值
instream.average() 求平均值
instream.sum()    求和
注意:以上方法不可以向举例中一样连续调用
     原因见Stream api思想
收集流的结果
1. 将流转换为集合
   Collectors为收集器
   流.collect(Collectors.toList)   //转换为List集合.collect(Collectors.toSet)    //转换为Set集合
2.限制收集个数
   limit(int num) num为收集的个数
   格式:.limit(3).collect(Collectors.toList) //之收集前三个结果
3.分组
  流.collect(Collectors.groupingBy(函数接口))
  返回Map集合key是组名,value为组员的集合
  举例:
  创建集合学生集合名为student,集合中都是学生对象
  //按照性别分组
  Map<String, List<Student>> mp = students.stream().collect(Collectors.groupingBy((s) -> s.getSex() ));
  System.out.pringln(mp); //打印看结果
4.下游收集器
   流.collect(Collectors.groupingBy(函数接口,Collectors.counting()))
   工作方式:先分组,在求每组内元素个数
   返回Map集合,key为组名,value为每组的个数

四、并行计算

List<Integer> list = Arrays.aslist(1,2,3,4);
int sum = list.parallelStream().mapToInt(a -> a).sum();
//             获得集合的并行流   转为数字流        求和  
System.out.println(sum);
//结果为 10

五、Stream API中重要思想

流水线思想(Pipeline):
把流中的数据一个接一个的进行处理,即每个数据都会经过后续的filter、map等方法的依次调用。

在整个执行过程中,lambda表达式是懒惰的,不执行终结方法的话,不会触发lambda的执行。
终结方法: collect, sum, max, min 等

运算过程中不会改变原始集合,收集器会生成新的集合对象。

城市运行管理的重要性与挑战 城市运行体系是以人为本的服务和经济发展体系,涉及决策、管理和执行三个层次。当前城市运行管理面临城市化快速发展、资源环境制约和社会矛盾突出等挑战。信息技术的发展为城市运行管理提供了重要手段,城市信息化经历了数字化、智能化到智慧化的发展过程。我国城市信息化虽取得进展,但仍处于初级阶段,存在缺乏整体规划、资源浪费和协作效率不高等问题。 智慧城市综合运行管理解决方案 智慧城市运行管理心(SCOC)是支撑城市运行综合管理的神经枢,旨在掌控城市运行综合体征,促进服务型政府转型。该心通过全面整合运行资源,服务城市未来发展,提升城市运行水平和突发事件处置效率。心纵向提升综合职能,横向贯通专业分工,包括综合管理平台、专业管理平台和业务操作平台,覆盖城市交通、公共安全、生态环境等多个领域。 智慧城市综合运行管理平台的结构与功能 智慧城市综合运行管理平台包括决策支持系统、处置系统、基础设施和监测系统。平台通过综合展现系统、综合应急指挥系统、综合运行业务联动系统等,实现城市运行的综合监测和管理。物联网数据采集系统利用网络通讯技术,实现城市物联网设备的高效运行。平台还包含云计算业务支撑系统、城市基础数据库、视频图像云平台等,以支持城市运行管理的各个方面。 智慧城市综合运行管理解决方案的优势 该解决方案具有三个核心优势:首先,它提供了完整的智慧城市视角,不仅仅是指挥心或数据心,而是智慧城市的实际载体。其次,它建立了完整的城市运行联动体系,打通业务部门壁垒,形成有机融合的业务联动平台,提升业务处理效率和服务水平。最后,方案凝聚了多年智慧城市建设咨询经验,为城市运行管理提供了成熟的解决方案。 项目实施建议 智慧城市运行管理心的建设思路和项目实施建议是方案的重要组成部分,旨在指导城市如何有效实施智慧城市运行管理解决方案,以应对城市运行管理的挑战,提升城市管理的智能化和效率。通过这些建议,城市能够更好地规划和实施智慧城市项目,实现可持续发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值