问题分析:所谓找主元素,就是在一个整数序列(数组)中,里面的某一个元素出现的次数超过元素总个数的一半,那么就陈这个元素为主元素。
性质1: 如果存在主元素的话,主元素一定是中位数。
方法1:
使用快排O(nlogn)进行排序,找到中位数,然后判断首元素是否和中位数相等、以及尾元素是否和中位数相等。 如果有一个以上的相等,则存在主元素(中位数)。
方法2:
使用O(n)的选择算法找到中位数,然后再判断中位数是不是主元素。
方法3:
性质2:如果一个数组中有主元素,则同时删除两个不相等的值,这个序列中的主元素不会改变。
其中比较好的解决方法是第三种,其实现可用递归,也可用迭代,下面代码分别给出其实现:
递归实现:
//a表示数组,len表示数组长度,num用于递归
int candidate(int *a,int len,int num)
{
int j = num;
int c = a[num];
int counts = 1;
while(j<len && counts>0)
{
j++;
if(a[j] == c) counts++;
else counts--;
}
if(j == len) return c;
else candidate(a,len,j+1);
}
void majority_1(int *a,int len)
{
int c = candidate(a,len,0);//注意数组下标是从0开始,所以递归也从0开始
int counts = 0;
for(int j = 0;j<7;j++)
{
if(a[j] == c) counts++;
}
if(counts > 7/2) cout<<c<<endl;
else
{
cout<<"none"<<endl;
return;
}
}
迭代实现:
void majority_2(int *a, int len)
{
int seed = a[0];
int count = 1;
for (int i = 1; i < len; i++)
{
if (seed == a[i])
count++;
else
{
if (count == 0)
{
seed = a[i];
count = 1;
}
else
count--;
}
}
// justify seed..
count = 0;
for (int i = 0; i < len; i++)
{
if (a[i] == seed)
count++;
}
if (count > len/2)
cout<<seed<<endl;
// no main elements in the array...
else cout<<"none"<<endl;
}
测试示例:
int main()
{
int a[7] = {1,2,3,1,2,1,1};
majority_1(a,7);
majority_2(a,7);
return 0;
}
结果都是输出:1