# DFS（深搜）例题 解题与心得

【问题描述】

【输入】

第一行是两个数m，n(1<m，n<15)，接下来是m行n列由1和0组成的数据，最后两行是起始点和结束点。

【输出】

问题1：所有可行的路径，描述一个点时用(x，y)的形式，除开始点外，其他的都要用“一>”表示方向。如果没有一条可行的路则输出-1。

……

【样例】

5 6

1 0 0 1 0 1

1 1 1 1 1 1

0 0 1 1 1 0

1 1 1 1 1 0

1 1 1 0 1 1

1 1

5 6

【输出样例】

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

#include <iostream>//走迷宫
using namespace std;

int	m,n,p[15][15]={0},bx,by,ex,ey;
int	dx[5]={0,1,0,-1,0},//表示上下
dy[5]={0,0,1,0,-1};//表示左右
int way[225][3]={0};//保存路径
bool set[15][15];
bool flag;
int minStep=1000;
int minWay[255][3];

bool check(int tx,int ty)
{
if(p[tx][ty]!=1) return false;//碰壁
if(tx>m || tx<1 || ty<1 ||ty>n)  return false;//越界
return true;
}

void search(int dep,int x,int y)
{
int tx,ty;
//if(dep>m*n) return;
if( x==ex && y==ey )
{
cout<<'('<<bx<<","<<by<<')';
for(int i=1;i<dep;i++)
cout<<"->"<<'('<<way[i][1]<<","<<way[i][2]<<')';
cout<<endl<<endl;
flag=true;
return;
}
else
{
for(int i=1;i<=4;i++)
{
tx=dx[i]+x;
ty=dy[i]+y;
if( check(tx,ty) && !set[tx][ty] )
{
way[dep][1]=tx;
way[dep][2]=ty;
set[tx][ty]=true;
search(dep+1,tx,ty);
set[tx][ty]=false;
}
}
}
}

int main()
{
cin>>m>>n;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
cin>>p[i][j];
cin>>bx>>by;
cin>>ex>>ey;
search(1,bx,by);
if(!flag) cout<<"-1"<<endl;
return 0;
}

DFS说白了也就是生成关于答案的全部的排列组合，然后取其中正确的解。。当然这样是很费时的，所以需要类似剪枝的操作，还有就是因为使用递归，必须考虑结点的重复问题，也就是所谓的“判重”。