http://acm.hdu.edu.cn/showproblem.php?pid=1863
/*
kruskal算法:
先把所有路线按权值排序,然后从小到大遍历每一条路线,如果路线的两端尚没有连通,就把该路线连通,并更新已连通路线的长度和数目,最后如果 ”已连通路线数目=端点数-1” 则已连通路线长度为最小生成树。
*/#include<stdio.h>
#include<stdlib.h>
int set[105],flag;
struct road
{
int a;
int b;
int value;
}s[5000];
int cmp(const void*a,const void*b)
{
return (*(struct road*)a).value-(*(struct road*)b).value;
}
int Findset(int x)
{
if(x!=set[x])
set[x]=Findset(set[x]);
return set[x];
}
void Unionset(int a,int b)
{
int x=Findset(a);
int y=Findset(b);
if(x==y)
return;
set[y]=x;
flag=1;
}
int main()
{
int n,m,i,t,sum;
while(scanf("%d%d",&n,&m),n)
{
for(i=1;i<=n;i++)
set[i]=i;
sum=0;t=0;
for(i=0;i<n;i++)
scanf("%d%d%d",&s[i].a,&s[i].b,&s[i].value);
qsort(s,n,sizeof(s[0]),cmp);
for(i=0;i<n;i++)
{
flag=0;
Unionset(s[i].a,s[i].b);
if(flag)
{
sum+=s[i].value;
t++;
}
}
if(t==m-1)
printf("%d\n",sum);
else
printf("?\n");
}
return 0;
}
/*
prim算法:
先任意确定一个点标记为已访问,然后每次找到已访问点集与其余集之间的最短距离,连通该路线,并将路线终点标记为已访问。直到所有点都标记为已访问。
prim算法与dijkstra算法(计算最短路)非常相似。注意它们的区别:
prim算法中找到的最短距离是已访问点集与其余集之间的最短距离,而dijkstra算法中的最短距离是起点到未访问点集的最短距离。prim算法可以将已访问的点的距离值置0表示已访问过,而dijkstra算法需另外开一个数组记录是否访问。
*/#include<stdio.h>
#include<stdlib.h>
#define M 102
#define Max 100000000
int map[M][M],value[M],m,sum,cnt;
void Prim()
{
int i,j,k,min;
cnt=1;
sum=0;
for(i=1;i<=m;i++) //初始化value[]
value[i]=map[1][i];
for(i=1;i<=m;i++){
min=Max;
for(j=1;j<=m;j++){ //找到当前最小支
if(value[j]!=0&&value[j]<min){
min=value[j];
k=j;
}
}
if(min==Max||cnt==m)break;
sum+=min;
cnt++;
value[k]=0;
for(j=1;j<=m;j++){ //更新value[]
if(value[j]!=0&&value[j]>map[k][j]) //value[j]记录已走过的点到点j的最短距离
value[j]=map[k][j];
}
}
}
int main()
{
int i,j,n,a,b,c;
while(scanf("%d%d",&n,&m),n){
for(i=1;i<=m;i++){
for(j=1;j<=m;j++)
map[i][j]=(i==j?0:Max);
}
for(i=1;i<=n;i++){
scanf("%d%d%d",&a,&b,&c);
map[a][b]=map[b][a]=min(map[a][b],c);
}
Prim();
if(cnt==m)
printf("%d\n",sum);
else
printf("?\n");
}
return 0;
}