python的几种乘法

一、python中几种乘法运算的区别


  • 1.np.multiplty()

作用:数组和矩阵对应位置相乘,输出结果与相乘数组/矩阵的大小一致.
例如:

  • 数组场景:

A = np.arrange(1,5).reshape(2,2)

即 A = array([[1,2],
          [3,4]])
B = np.arrange(1,5).reshape(2,2)
即 B = array([[0,1],
          [2,3]])
C = np.mulitply(A,B)  
C = array([[0,2],
           [6,12]])

  • 矩阵场景:

np.multiply(np.mat(A),np.mat(B))
得 matrix([[0,2]
       [6,12])
np.sum(np.multiply(np.mat(A),np.mat(B)))  #输出为标量


 

  • 2.np.dot()函数

作用:对于秩为1的数组,执行对应位置相乘然后再相加;对于秩不为1的数组,执行矩阵乘法运算
例如:

  • 数组秩为1的情况:对应位置相乘然后再相加

D = array(np.arrange(1,4))
D = array([1,2,3])
E = array(np.arrange(0,3))
E = array([0,1,2])
np.dot(D,E) #对应位置相乘再求和
输出 8

  • 数组秩不为1的情况:执行矩阵乘法运算

 A = array([[1,2],
          [3,4]])

 B = array([[0,1],
          [2,3]])

np.dot(A,B)
得 array([[4,7],
          [8,15]])

  • 矩阵情况:执行乘法运算

np.dot(np.mat(A),np.mat(B))
得 array([[4,7],
          [8,15]])


  • 3.星号*运算

作用:对数组执行对应位置相乘,对矩阵执行矩阵乘法运算

  • 数组场景:对应位置相乘

A = np.arrange(1,5).reshape(2,2)
即 A = array([[1,2],
          [3,4]])
B = np.arrange(1,5).reshape(2,2)
即 B = array([[0,1],
          [2,3]])
C = np.mulitply(A,B)  
C = array([[0,2],
           [6,12]])

  • 矩阵场景:乘法运算

(np.mat(A))*(np.mat(B))  #执行矩阵乘法运算
得matrix([[4,7],
          [8,15]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值